接续上篇Java线程安全,这次来撸一撸Java中并发容器的源码。
ConcurrentHashMap&HashTable&HashMap
这个应该是面试中比较经典的一个问题了,三者的区别主要如下:
HashMap:非线程安全,在多线程环境下可能出现数据丢失的情况
HashTable:线程安全,但是实现方法只是在方法上加synchronized关键字,结合HashTable的数据结构来看,底层是由Node链表数组来实现的,当两个key hash值不一样时,会放在数组的不同位置,而简单的加synchronized关键字会阻塞其他所有的put操作,性能较差
ConcurrentHashMap:很好的避免了HashTable的缺点,put操作只会对数组特定位置的Node链表加锁,不会影响其他位置的操作,性能大大提高
class ConcurrentHashMap:
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//如果当前位置Node为空,通过cas操作设置
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
//锁定当前位置Node链表
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
原子操作类
核心原理都是通过volatile+CAS保证操作的线程安全,主要还是得理解上篇文章中线程安全问题的原因,volatile保证了代码里面的value(线程工作内存中的值)与主内存值的一致性,通过CAS的原子性操作比较并修改主存中的值。这句话可能有点绕,举个例子:
主存中value值为1
线程A、B同时读取到各自的工作内存value值为1
线程A、B同时通过CAS(1,2)指令想要设为2,由于CAS指令的原子性,假设A线程成功,则线程A和主存的值均变为2,这时才开始执行B的CAS(1,2)指令发现值已经变为2,线程2失败
然后线程B想要再次进行CAS操作时,由于volatile的可见性,必定会从主存重新读取value值为2,再次通过CAS(2,2)指令去修改就能够成功了
public class AtomicInteger:
// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
/**
* Atomically sets the value to the given updated value
* if the current value {@code ==} the expected value.
*
* @param expect the expected value
* @param update the new value
* @return {@code true} if successful. False return indicates that
* the actual value was not equal to the expected value.
*/
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
BlockingQueue家族
Java中的阻塞队列实现原理都是通过上篇文章中提到的ReentrantLock来实现的,所有操作方法都必须先获取内部的ReentrantLock才能继续,否则返回false/阻塞/抛出异常,常用的阻塞队列有以下几个:
ArrayBlockingQueue:由数组实现的有界阻塞队列
LinkedBlockingQueue:由链表实现的有界阻塞队列
PriorityBlockingQueue:由数组实现的支持优先级的无界阻塞队列
SynchronousBlockingQueue:不储存元素的阻塞队列,所有的入队列操作都将阻塞,直到被出队列唤醒,反之亦然,newCachedThreadPool中的阻塞队列就是这个
DelayBlockingQueue:基于PriorityQueue实现的延时阻塞队列
下面就以ArrayBlockingQueue为例摸一遍源码吧,其他也都差不多的套路:
/** Number of elements in the queue */
int count;
/*
* Concurrency control uses the classic two-condition algorithm
* found in any textbook.
*/
/** Main lock guarding all access */
final ReentrantLock lock;
/** Condition for waiting takes */
private final Condition notEmpty;
/** Condition for waiting puts */
private final Condition notFull;
/**
* Inserts the specified element at the tail of this queue, waiting
* for space to become available if the queue is full.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length)
notFull.await();
enqueue(e);
} finally {
lock.unlock();
}
}
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0)
notEmpty.await();
return dequeue();
} finally {
lock.unlock();
}
}
private void enqueue(E x) {
// assert lock.getHoldCount() == 1;
// assert items[putIndex] == null;
final Object[] items = this.items;
items[putIndex] = x;
if (++putIndex == items.length)
putIndex = 0;
count++;
notEmpty.signal();
}
public int size() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return count;
} finally {
lock.unlock();
}
}
/**
* Extracts element at current take position, advances, and signals.
* Call only when holding lock.
*/
private E dequeue() {
// assert lock.getHoldCount() == 1;
// assert items[takeIndex] != null;
final Object[] items = this.items;
@SuppressWarnings("unchecked")
E x = (E) items[takeIndex];
items[takeIndex] = null;
if (++takeIndex == items.length)
takeIndex = 0;
count--;
if (itrs != null)
itrs.elementDequeued();
notFull.signal();
return x;
}
核心方法是enqueue、dequeue,因为是private并不包含任何同步和长度判断,只是简单的在数组中插入和删除元素罢了,真正的同步实在对外暴露的put、take等方法,首先获取Lock,同时会判断长度问题决定是否需要通过Condition等待队列非空/非满。
关于BlockingQueue可以思考以下细节问题:
队列长度问题:ArrayBlockingQueue通过count来记录长度,为什么不需要加volatile呢?上篇文章有讲到AQS中已经通过volatile来避免state的可见性问题,BlockingQueue中获取count之前已经获取锁,肯定不会有可见性问题的了。LinkedBlockingQueue中直接用了AtomicInteger来记录长度,简单粗暴,在获取size等方法时都不需要加锁。
无界队列如PriorityBlockingQueue用数组实现最小堆结构,这个需要注意数据扩容导致的性能问题。
Deque:采用双端队列的结构,其实主要原理还是一样,只不过加了尾部进出队列的方法。
总结
要学好Java并发编程,最重要的还是要理解JMM中并发问题的原理、Volatile+CAS的实现、Synchronized对象锁,几乎里面所有的东西都是围绕这几个东西来实现的。
网友评论