本篇提纲:
1、上一篇内容补充
2、创建队列dispatch_queue_create的源码分析
3、GCD的底层继承链
4、同步函数dispatch_sync源码分析
5、异步函数dispatch_async源码分析
6、单例dispatch_once_t源码分析
一、内容补充
上一篇文章我们简单的看了一下主队列dispatch_get_main_queue
的一部分源码,我自己也留下了一些疑问,这篇文章首先来进行一下简单的补充主要是两个问题:
1、底层源码的哪个用来字段区分是串行队列和并行队列?
2、dq_serialnum是用来做什么的?
我们顺着这两个问题来继续更加深入的去看看源码。
dispatch_get_main_quque
源码:
dispatch_queue_main_t
dispatch_get_main_queue(void)
{
return DISPATCH_GLOBAL_OBJECT(dispatch_queue_main_t, _dispatch_main_q);
}
dispatch_queue_main_t
根据源码我们可以了解到,最后返回的类型是dispatch_queue_main_t
,而dispatch_queue_main_t
的定义是dispatch_queue_static_s
类型,我们这样一层一层的去查找源码可以最终找到_OS_OBJECT_HEADER
,这个路径是:
dispatch_queue_main_t
->dispatch_queue_static_s
->dispatch_lane_s
->DISPATCH_LANE_CLASS_HEADER
->_DISPATCH_QUEUE_CLASS_HEADER
->DISPATCH_OBJECT_HEADER
->OS_OBJECT_STRUCT_HEADER
->_OS_OBJECT_HEADER
_OS_OBJECT_HEADER是一个宏定义如下:
#define _OS_OBJECT_HEADER(isa, ref_cnt, xref_cnt) \
isa; /* must be pointer-sized and use __ptrauth_objc_isa_pointer */ \
int volatile ref_cnt; \
int volatile xref_cnt
绕了这么大一圈儿发现dispatch_queue_main_t
最下层是一个isa
的层层封装,😂😂😂前边还包括了dq_serialnum
还有dq_label
等信息
DISPATCH_GLOBAL_OBJECT
#define DISPATCH_GLOBAL_OBJECT(type, object) ((OS_OBJECT_BRIDGE type)&(object))
返回类型我们了解过了,再来看实现的方法DISPATCH_GLOBAL_OBJECT
,发现又是一个宏定义。
第一个参数是type对应:dispatch_queue_main_t
;
第二个参数是object对应:_dispatch_main_q
;
所以这里DISPATCH_GLOBAL_OBJECT
的运算是第一个参数和第二个参数做安位与运算返回结果,应该是一个自己的类型和一个对象做运算取值的过程。
_dispatch_main_q
struct dispatch_queue_static_s _dispatch_main_q = {
DISPATCH_GLOBAL_OBJECT_HEADER(queue_main), //前面分析过了,实际上是isa
#if !DISPATCH_USE_RESOLVERS //不是
.do_targetq = _dispatch_get_default_queue(true),
#endif
.dq_state = DISPATCH_QUEUE_STATE_INIT_VALUE(1) |
DISPATCH_QUEUE_ROLE_BASE_ANON,
.dq_label = "com.apple.main-thread",
.dq_atomic_flags = DQF_THREAD_BOUND | DQF_WIDTH(1),
.dq_serialnum = 1,
};
我们来一行一行的分析代码:
1、#if !DISPATCH_USE_RESOLVERS
#if DISPATCH_USE_RESOLVERS // rdar://problem/8541707
_dispatch_main_q.do_targetq = _dispatch_get_default_queue(true);
#define _dispatch_get_default_queue(overcommit) \
_dispatch_root_queues[DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS + \
!!(overcommit)]._as_dq
_dispatch_root_queues
定义:
struct dispatch_queue_global_s _dispatch_root_queues[] = {
#define _DISPATCH_ROOT_QUEUE_IDX(n, flags) \
((flags & DISPATCH_PRIORITY_FLAG_OVERCOMMIT) ? \
DISPATCH_ROOT_QUEUE_IDX_##n##_QOS_OVERCOMMIT : \
DISPATCH_ROOT_QUEUE_IDX_##n##_QOS)
#define _DISPATCH_ROOT_QUEUE_ENTRY(n, flags, ...) \
[_DISPATCH_ROOT_QUEUE_IDX(n, flags)] = { \
DISPATCH_GLOBAL_OBJECT_HEADER(queue_global), \
.dq_state = DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE, \
.do_ctxt = _dispatch_root_queue_ctxt(_DISPATCH_ROOT_QUEUE_IDX(n, flags)), \
.dq_atomic_flags = DQF_WIDTH(DISPATCH_QUEUE_WIDTH_POOL), \
.dq_priority = flags | ((flags & DISPATCH_PRIORITY_FLAG_FALLBACK) ? \
_dispatch_priority_make_fallback(DISPATCH_QOS_##n) : \
_dispatch_priority_make(DISPATCH_QOS_##n, 0)), \
__VA_ARGS__ \
}
_DISPATCH_ROOT_QUEUE_ENTRY(MAINTENANCE, 0,
.dq_label = "com.apple.root.maintenance-qos",
.dq_serialnum = 4,
),
_DISPATCH_ROOT_QUEUE_ENTRY(MAINTENANCE, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.maintenance-qos.overcommit",
.dq_serialnum = 5,
),
_DISPATCH_ROOT_QUEUE_ENTRY(BACKGROUND, 0,
.dq_label = "com.apple.root.background-qos",
.dq_serialnum = 6,
),
_DISPATCH_ROOT_QUEUE_ENTRY(BACKGROUND, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.background-qos.overcommit",
.dq_serialnum = 7,
),
_DISPATCH_ROOT_QUEUE_ENTRY(UTILITY, 0,
.dq_label = "com.apple.root.utility-qos",
.dq_serialnum = 8,
),
_DISPATCH_ROOT_QUEUE_ENTRY(UTILITY, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.utility-qos.overcommit",
.dq_serialnum = 9,
),
_DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT, DISPATCH_PRIORITY_FLAG_FALLBACK,
.dq_label = "com.apple.root.default-qos",
.dq_serialnum = 10,
),
_DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT,
DISPATCH_PRIORITY_FLAG_FALLBACK | DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.default-qos.overcommit",
.dq_serialnum = 11,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INITIATED, 0,
.dq_label = "com.apple.root.user-initiated-qos",
.dq_serialnum = 12,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INITIATED, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.user-initiated-qos.overcommit",
.dq_serialnum = 13,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INTERACTIVE, 0,
.dq_label = "com.apple.root.user-interactive-qos",
.dq_serialnum = 14,
),
_DISPATCH_ROOT_QUEUE_ENTRY(USER_INTERACTIVE, DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.user-interactive-qos.overcommit",
.dq_serialnum = 15,
),
};
而DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS
是一个枚举值:
我们看完以上这些信息还得回溯到前面DISPATCH_USE_RESOLVERS
的定义可以了解传进来的值是ture,所以:
_dispatch_root_queues[DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS + \ !!(overcommit)]._as_dq
里面的
DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS+
!!(overcommit) 就等于
6+!!(ture)= 6+!!(1) =7;
所以:_dispatch_root_queues取得就是第七个index对应的值也就是_dispatch_root_queues[7] 是:
_DISPATCH_ROOT_QUEUE_ENTRY(DEFAULT,
DISPATCH_PRIORITY_FLAG_FALLBACK | DISPATCH_PRIORITY_FLAG_OVERCOMMIT,
.dq_label = "com.apple.root.default-qos.overcommit",
.dq_serialnum = 11,
),
是一个com.apple.root.default-qos.overcommit
类型的。而_DISPATCH_ROOT_QUEUE_ENTRY
在_dispatch_root_queues
的前边就有宏定义,里面包括很多信息:
[_DISPATCH_ROOT_QUEUE_IDX(n, flags)] = { \
DISPATCH_GLOBAL_OBJECT_HEADER(queue_global), \
.dq_state = DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE, \
.do_ctxt = _dispatch_root_queue_ctxt(_DISPATCH_ROOT_QUEUE_IDX(n, flags)), \
.dq_atomic_flags = DQF_WIDTH(DISPATCH_QUEUE_WIDTH_POOL), \
.dq_priority = flags | ((flags & DISPATCH_PRIORITY_FLAG_FALLBACK) ? \
_dispatch_priority_make_fallback(DISPATCH_QOS_##n) : \
_dispatch_priority_make(DISPATCH_QOS_##n, 0)), \
__VA_ARGS__ \
}
由此部分定义可以看到:
dq_atomic_flags
对应的是DQF_WIDTH(DISPATCH_QUEUE_WIDTH_POOL)
,也就是这个队列的原子属性和非原子属性的flag是DQF_WIDTH
。
_dispatch_root_queues[DISPATCH_ROOT_QUEUE_IDX_DEFAULT_QOS + \ !!(overcommit)]._as_dq
后面的_as_dq
是DISPATCH_LANE_CLASS_HEADER
宏定义里面的值
#define DISPATCH_LANE_CLASS_HEADER(x) \
struct dispatch_queue_s _as_dq[0]; \
DISPATCH_QUEUE_CLASS_HEADER(x, \
struct dispatch_object_s *volatile dq_items_tail); \
dispatch_unfair_lock_s dq_sidelock; \
struct dispatch_object_s *volatile dq_items_head; \
uint32_t dq_side_suspend_cnt
所以我们回到第一句代码的预处理判断#if !DISPATCH_USE_RESOLVERS
这个的意思就是:不是这种类型的队列的情况下才执行:
.do_targetq = _dispatch_get_default_queue(true),
.do_targetq 才有值。
2、.dq_state = DISPATCH_QUEUE_STATE_INIT_VALUE(1) | DISPATCH_QUEUE_ROLE_BASE_ANON,
然后到这句。DISPATCH_QUEUE_STATE_INIT_VALUE
定义如下:
#define DISPATCH_QUEUE_STATE_INIT_VALUE(width) \
((DISPATCH_QUEUE_WIDTH_FULL - (width)) << DISPATCH_QUEUE_WIDTH_SHIFT)
#define DISPATCH_QUEUE_WIDTH_FULL 0x1000ull
#define DISPATCH_QUEUE_ROLE_BASE_ANON 0x0000001000000000ull
#define DISPATCH_QUEUE_WIDTH_SHIFT 41
又是宏。查到上面的源代码吧对应的值进行替换可以把这句代码写成:
.dq_state = ((0x1000ull - (1)) << 41) | 0x0000001000000000ull,
因为这样,还是看不太出来这个.dq_state
是做什么的,然后我去搜索.dq_state
相关的宏定义赋值,从赋值上看看能不能找到相关的注释,结果被我找到了一处大致的说明:
根据这个注释大致可以看出来,这个
dq_state
的值表示全局队列的,有两个值一个是QUEUE_FULL
,还一个是INBARRIER
,在dispatch_barrier_sync() 和dispatch_sync()中会设置,来进行阻塞。
dq_label
:这个是队列的标签,显而易见,也就是那个队列名称。
dq_atomic_flags
:在检索这一项的时候,直接查找是找不到相关的信息的,所以我还是从值的地方开始入手去看。查到了相关DQF_THREAD_BOUND
,于是就找到了这个
DISPATCH_OPTIONS(dispatch_queue_flags, uint32_t,
DQF_NONE = 0x00000000,
DQF_AUTORELEASE_ALWAYS = 0x00010000,
DQF_AUTORELEASE_NEVER = 0x00020000,
#define _DQF_AUTORELEASE_MASK 0x00030000
DQF_THREAD_BOUND = 0x00040000, // queue is bound to a thread
DQF_BARRIER_BIT = 0x00080000, // queue is a barrier on its target
DQF_TARGETED = 0x00100000, // queue is targeted by another object
DQF_LABEL_NEEDS_FREE = 0x00200000, // queue label was strdup()ed
DQF_MUTABLE = 0x00400000,
DQF_RELEASED = 0x00800000, // xref_cnt == -1
//
// Only applies to sources
//
// @const DSF_STRICT
// Semantics of the source are strict (implies DQF_MUTABLE being unset):
// - handlers can't be changed past activation
// - EV_VANISHED causes a hard failure
// - source can't change WLH
//
// @const DSF_WLH_CHANGED
// The wlh for the source changed (due to retarget past activation).
// Only used for debugging and diagnostics purposes.
//
// @const DSF_CANCELED
// Explicit cancelation has been requested.
//
// @const DSF_CANCEL_WAITER
// At least one caller of dispatch_source_cancel_and_wait() is waiting on
// the cancelation to finish. DSF_CANCELED must be set if this bit is set.
//
// @const DSF_NEEDS_EVENT
// The source has started to delete its unotes due to cancelation, but
// couldn't finish its unregistration and is waiting for some asynchronous
// events to fire to be able to.
//
// This flag prevents spurious wakeups when the source state machine
// requires specific events to make progress. Events that are likely
// to unblock a source state machine pass DISPATCH_WAKEUP_EVENT
// which neuters the effect of DSF_NEEDS_EVENT.
//
// @const DSF_DELETED
// The source can now only be used as a queue and is not allowed to register
// any new unote anymore. All the previously registered unotes are inactive
// and their knote is gone. However, these previously registered unotes may
// still be in the process of delivering their last event.
//
// Sources have an internal refcount taken always while they use eventing
// subsystems which is consumed when this bit is set.
//
DSF_STRICT = 0x04000000,
DSF_WLH_CHANGED = 0x08000000,
DSF_CANCELED = 0x10000000,
DSF_CANCEL_WAITER = 0x20000000,
DSF_NEEDS_EVENT = 0x40000000,
DSF_DELETED = 0x80000000,
#define DQF_FLAGS_MASK ((dispatch_queue_flags_t)0xffff0000)
#define DQF_WIDTH_MASK ((dispatch_queue_flags_t)0x0000ffff)
#define DQF_WIDTH(n) ((dispatch_queue_flags_t)(uint16_t)(n))
);
所以这个值为:dq_atomic_flags = DQF_THREAD_BOUND | DQF_WIDTH(1) = DQF_THREAD_BOUND,根据这个注释可以看到,这里是描述队列是不是存在阻塞啊什么的类型的。
dq_serialnum
:同样我们使用找值的方法继续探索这个的定义。如下
这个注释中解释,没有0,1表示主队列,4到15是全局队列,16是自定义队列。
所以这个值是用来描述队列名称的类型的,来区分主队列,全局,和自定义等等队列的。
二、创建队列dispatch_queue_create的源码分析
dispatch_queue_create
源码:
dispatch_queue_t
dispatch_queue_create(const char *label, dispatch_queue_attr_t attr)
{
return _dispatch_lane_create_with_target(label, attr,
DISPATCH_TARGET_QUEUE_DEFAULT, true);
}
根据这个源码可以看到来到了方法_dispatch_lane_create_with_target
,然后这个方法的内容挺多的。这个方法源码中有一部分注释:
static dispatch_queue_t
_dispatch_lane_create_with_target(const char *label, dispatch_queue_attr_t dqa,
dispatch_queue_t tq, bool legacy)
{
dispatch_queue_attr_info_t dqai = _dispatch_queue_attr_to_info(dqa);
//
// Step 1: Normalize arguments (qos, overcommit, tq)
//
dispatch_qos_t qos = dqai.dqai_qos;
//此处省略好多行代码。。。。。。。。。。。。。。。。。。。。。。。。。。
//
// Step 2: Initialize the queue
//
if (legacy) {
// if any of these attributes is specified, use non legacy classes
if (dqai.dqai_inactive || dqai.dqai_autorelease_frequency) {
legacy = false;
}
}
const void *vtable;
dispatch_queue_flags_t dqf = legacy ? DQF_MUTABLE : 0;
if (dqai.dqai_concurrent) {
vtable = DISPATCH_VTABLE(queue_concurrent);
} else {
vtable = DISPATCH_VTABLE(queue_serial);
}
switch (dqai.dqai_autorelease_frequency) {
case DISPATCH_AUTORELEASE_FREQUENCY_NEVER:
dqf |= DQF_AUTORELEASE_NEVER;
break;
case DISPATCH_AUTORELEASE_FREQUENCY_WORK_ITEM:
dqf |= DQF_AUTORELEASE_ALWAYS;
break;
}
if (label) {
const char *tmp = _dispatch_strdup_if_mutable(label);
if (tmp != label) {
dqf |= DQF_LABEL_NEEDS_FREE;
label = tmp;
}
}
dispatch_lane_t dq = _dispatch_object_alloc(vtable,
sizeof(struct dispatch_lane_s));
_dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ?
DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER |
(dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0));
dq->dq_label = label;
dq->dq_priority = _dispatch_priority_make((dispatch_qos_t)dqai.dqai_qos,
dqai.dqai_relpri);
if (overcommit == _dispatch_queue_attr_overcommit_enabled) {
dq->dq_priority |= DISPATCH_PRIORITY_FLAG_OVERCOMMIT;
}
if (!dqai.dqai_inactive) {
_dispatch_queue_priority_inherit_from_target(dq, tq);
_dispatch_lane_inherit_wlh_from_target(dq, tq);
}
_dispatch_retain(tq);
dq->do_targetq = tq;
_dispatch_object_debug(dq, "%s", __func__);
return _dispatch_trace_queue_create(dq)._dq;
}
step1
:Normalize arguments (qos, overcommit, tq),规范参数。
step2
:Initialize the queue,第二步才是真正初始化队列的部分。
根据源码可以看到创建队列的关键方法是:
dispatch_lane_t dq = _dispatch_object_alloc(vtable, sizeof(struct dispatch_lane_s));
进入到_dispatch_object_alloc
:
void *
_dispatch_object_alloc(const void *vtable, size_t size)
{
#if OS_OBJECT_HAVE_OBJC1
const struct dispatch_object_vtable_s *_vtable = vtable;
dispatch_object_t dou;
dou._os_obj = _os_object_alloc_realized(_vtable->_os_obj_objc_isa, size);
dou._do->do_vtable = vtable;
return dou._do;
#else
return _os_object_alloc_realized(vtable, size);
#endif
}
这个方法是开辟空间,再深入进去看来到_os_object_alloc_realized
,这个把cls和obj->os_obj_isa
进行绑定,并且开辟相应的size空间。
而接下来的_dispatch_queue_init
的实现如下:
static inline dispatch_queue_class_t
_dispatch_queue_init(dispatch_queue_class_t dqu, dispatch_queue_flags_t dqf,
uint16_t width, uint64_t initial_state_bits)
{
uint64_t dq_state = DISPATCH_QUEUE_STATE_INIT_VALUE(width);
dispatch_queue_t dq = dqu._dq;
dispatch_assert((initial_state_bits & ~(DISPATCH_QUEUE_ROLE_MASK |
DISPATCH_QUEUE_INACTIVE)) == 0);
if (initial_state_bits & DISPATCH_QUEUE_INACTIVE) {
dq->do_ref_cnt += 2; // rdar://8181908 see _dispatch_lane_resume
if (dx_metatype(dq) == _DISPATCH_SOURCE_TYPE) {
dq->do_ref_cnt++; // released when DSF_DELETED is set
}
}
dq_state |= initial_state_bits;
dq->do_next = DISPATCH_OBJECT_LISTLESS;
dqf |= DQF_WIDTH(width);
os_atomic_store2o(dq, dq_atomic_flags, dqf, relaxed);
dq->dq_state = dq_state;
dq->dq_serialnum =
os_atomic_inc_orig(&_dispatch_queue_serial_numbers, relaxed);
return dqu;
}
这方法有四个参数,第三个是width
,我们再去前边看这个方法的调用,看看传进来的是什么:
_dispatch_queue_init(dq, dqf, dqai.dqai_concurrent ? DISPATCH_QUEUE_WIDTH_MAX : 1, DISPATCH_QUEUE_ROLE_INNER | (dqai.dqai_inactive ? DISPATCH_QUEUE_INACTIVE : 0));
第三个参数是dqai.dqai_concurrent ? DISPATCH_QUEUE_WIDTH_MAX : 1
,而dqai.dqai_concurrent我们再看方法_dispatch_lane_create_with_target
发现里面有一段是:
const void *vtable;
dispatch_queue_flags_t dqf = legacy ? DQF_MUTABLE : 0;
if (dqai.dqai_concurrent) {
vtable = DISPATCH_VTABLE(queue_concurrent);
} else {
vtable = DISPATCH_VTABLE(queue_serial);
}
这很明显这个值dqai_concurrent
代表并发还是串行队列,所以这个dqai_concurrent ? DISPATCH_QUEUE_WIDTH_MAX : 1
,并发的时候为DISPATCH_QUEUE_WIDTH_MAX,串行的时候为1,也就是对应上了DQF_WIDTH(width)
=DQF_WIDTH(1)
,所以这个值表示的是串行或者并行。
而且,进一步看DISPATCH_QUEUE_WIDTH_MAX
=0x1000ull-2=0xFFe,而如果是串行队列,width就是1,这个width可能描述的是并发的个数,这样也说得通串行的时候并发数是1,并行的时候不限制。
再接着往下看,可以看到dq_label,优先级等一些赋值,然后最后释放了tq,tq是什么呢,往上查阅代码可以看到tq的获取在这里:
if (!tq) {
tq = _dispatch_get_root_queue(
qos == DISPATCH_QOS_UNSPECIFIED ? DISPATCH_QOS_DEFAULT : qos,
overcommit == _dispatch_queue_attr_overcommit_enabled)->_as_dq;
if (unlikely(!tq)) {
DISPATCH_CLIENT_CRASH(qos, "Invalid queue attribute");
}
}
所以又回到了最开始的_dispatch_get_root_queue,从root队列里面取(里面标号1~17的那个)。
dispatch_queue_create
的大致流程是,通过方法_dispatch_lane_create_with_target
先进行参数的规范处理,然后通过tq的判断去root_quque中拿到相应队列的信息attributes等,进行开辟空间,生成_os_object_t
对象,然后进行dq_label,并行串行,优先级等一些信息的初始化,最终把拿到的队列类型相应的attributes付给创建好的队列。
三、GCD的底层继承链
上面我们创建队列的时候,返回的是dispatch_queue_t
,我们通过源码具体来看看它的定义:
typedef struct dispatch_queue_s *dispatch_queue_t;
struct dispatch_queue_s {
DISPATCH_QUEUE_CLASS_HEADER(queue, void *__dq_opaque1);
/* 32bit hole on LP64 */
} DISPATCH_ATOMIC64_ALIGN;
#define _DISPATCH_QUEUE_CLASS_HEADER(x, __pointer_sized_field__) \
DISPATCH_OBJECT_HEADER(x); \
DISPATCH_UNION_LE(uint64_t volatile dq_state, \
dispatch_lock dq_state_lock, \
uint32_t dq_state_bits \
); \
#define _DISPATCH_OBJECT_HEADER(x) \
struct _os_object_s _as_os_obj[0]; \
OS_OBJECT_STRUCT_HEADER(dispatch_##x); \
struct dispatch_##x##_s *volatile do_next; \
struct dispatch_queue_s *do_targetq; \
void *do_ctxt; \
union { \
dispatch_function_t DISPATCH_FUNCTION_POINTER do_finalizer; \
void *do_introspection_ctxt; \
}
dispatch_queue_t
是类型dispatch_queue_s
->DISPATCH_QUEUE_CLASS_HEADER
->DISPATCH_OBJECT_HEADER
等等,这个我们在第一个部分研究过,最后是一个isa
,所以队列queue_t的本质也是个isa
,isa
的上层封装的是对象_OS_OBJECT_HEADER
,也就是定义的_os_object_s
,而_os_object_s
又typedef struct _os_object_s *_os_object_t;
所以这个过程和我们前面学过的对象的继承链class->objc_class->objc_object,
dispatch_queue_t-> dispatch_queue_s-> _os_object_s类似。
四、同步函数dispatch_sync源码分析
dispatch_sync
:
void
dispatch_sync(dispatch_queue_t dq, dispatch_block_t work)
{
uintptr_t dc_flags = DC_FLAG_BLOCK;
if (unlikely(_dispatch_block_has_private_data(work))) {
return _dispatch_sync_block_with_privdata(dq, work, dc_flags);
}
_dispatch_sync_f(dq, work, _dispatch_Block_invoke(work), dc_flags);
}
-
传入的work参数就是任务的block,一直追寻work参数就能找到调用的代码
这里有一个判断,分别根据unlikely
的最终值,调用不同的代码,分别是_dispatch_sync_block_with_privdata
和_dispatch_sync_f
。我们先来看_dispatch_sync_f
。 -
_dispatch_sync_f
static void
_dispatch_sync_f(dispatch_queue_t dq, void *ctxt, dispatch_function_t func,
uintptr_t dc_flags)
{
_dispatch_sync_f_inline(dq, ctxt, func, dc_flags);
}
static inline void
_dispatch_sync_f_inline(dispatch_queue_t dq, void *ctxt,
dispatch_function_t func, uintptr_t dc_flags)
{
if (likely(dq->dq_width == 1)) {
return _dispatch_barrier_sync_f(dq, ctxt, func, dc_flags);
}
if (unlikely(dx_metatype(dq) != _DISPATCH_LANE_TYPE)) {
DISPATCH_CLIENT_CRASH(0, "Queue type doesn't support dispatch_sync");
}
dispatch_lane_t dl = upcast(dq)._dl;
// Global concurrent queues and queues bound to non-dispatch threads
// always fall into the slow case, see DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE
if (unlikely(!_dispatch_queue_try_reserve_sync_width(dl))) {
return _dispatch_sync_f_slow(dl, ctxt, func, 0, dl, dc_flags);
}
if (unlikely(dq->do_targetq->do_targetq)) {
return _dispatch_sync_recurse(dl, ctxt, func, dc_flags);
}
_dispatch_introspection_sync_begin(dl);
_dispatch_sync_invoke_and_complete(dl, ctxt, func DISPATCH_TRACE_ARG(
_dispatch_trace_item_sync_push_pop(dq, ctxt, func, dc_flags)));
}
可以看到_dispatch_sync_f_inline
中的判断还挺多的,具体走了哪个分支我们通过符号断点来确定:
进来来到了
_dispatch_sync_f_slow
:
DISPATCH_NOINLINE
static void
_dispatch_sync_f_slow(dispatch_queue_class_t top_dqu, void *ctxt,
dispatch_function_t func, uintptr_t top_dc_flags,
dispatch_queue_class_t dqu, uintptr_t dc_flags)
{
dispatch_queue_t top_dq = top_dqu._dq;
dispatch_queue_t dq = dqu._dq;
if (unlikely(!dq->do_targetq)) {
return _dispatch_sync_function_invoke(dq, ctxt, func);
}
pthread_priority_t pp = _dispatch_get_priority();
struct dispatch_sync_context_s dsc = {
.dc_flags = DC_FLAG_SYNC_WAITER | dc_flags,
.dc_func = _dispatch_async_and_wait_invoke,
.dc_ctxt = &dsc,
.dc_other = top_dq,
.dc_priority = pp | _PTHREAD_PRIORITY_ENFORCE_FLAG,
.dc_voucher = _voucher_get(),
.dsc_func = func,
.dsc_ctxt = ctxt,
.dsc_waiter = _dispatch_tid_self(),
};
_dispatch_trace_item_push(top_dq, &dsc);
__DISPATCH_WAIT_FOR_QUEUE__(&dsc, dq);
if (dsc.dsc_func == NULL) {
// dsc_func being cleared means that the block ran on another thread ie.
// case (2) as listed in _dispatch_async_and_wait_f_slow.
dispatch_queue_t stop_dq = dsc.dc_other;
return _dispatch_sync_complete_recurse(top_dq, stop_dq, top_dc_flags);
}
_dispatch_introspection_sync_begin(top_dq);
_dispatch_trace_item_pop(top_dq, &dsc);
_dispatch_sync_invoke_and_complete_recurse(top_dq, ctxt, func,top_dc_flags
DISPATCH_TRACE_ARG(&dsc));
}
我们再下符号断点来看走的是哪个部分,来到的是_dispatch_sync_function_invoke
我们接着跟进来:
static void
_dispatch_sync_function_invoke(dispatch_queue_class_t dq, void *ctxt,
dispatch_function_t func)
{
_dispatch_sync_function_invoke_inline(dq, ctxt, func);
}
static inline void
_dispatch_sync_function_invoke_inline(dispatch_queue_class_t dq, void *ctxt,
dispatch_function_t func)
{
dispatch_thread_frame_s dtf;
_dispatch_thread_frame_push(&dtf, dq);
_dispatch_client_callout(ctxt, func);
_dispatch_perfmon_workitem_inc();
_dispatch_thread_frame_pop(&dtf);
}
这里我分别试了下同步串行队列,还有并发队列,串行队列走的是_dispatch_sync_f_slow
,并发队列走的是_dispatch_sync_invoke_and_complete
,_dispatch_sync_invoke_and_complete
,而他们最终都会来到方法_dispatch_sync_function_invoke_inline
。
- _dispatch_thread_frame_push 任务入队
- _dispatch_client_callout任务执行
- _dispatch_thread_frame_pop任务出队
_dispatch_client_callout
:
void
_dispatch_client_callout(void *ctxt, dispatch_function_t f)
{
_dispatch_get_tsd_base();
void *u = _dispatch_get_unwind_tsd();
if (likely(!u)) return f(ctxt);
_dispatch_set_unwind_tsd(NULL);
f(ctxt);
_dispatch_free_unwind_tsd();
_dispatch_set_unwind_tsd(u);
}
这个执行函数f,就是外界传回来的block回调。
- 死锁
当出现死锁的时候,我们的编译器定位到_dispatch_sync_f_slow
,然后调用到__DISPATCH_WAIT_FOR_QUEUE__
。
_dispatch_sync_f_slow
DISPATCH_WAIT_FOR_QUEUE:
static void
__DISPATCH_WAIT_FOR_QUEUE__(dispatch_sync_context_t dsc, dispatch_queue_t dq)
{
uint64_t dq_state = _dispatch_wait_prepare(dq);
if (unlikely(_dq_state_drain_locked_by(dq_state, dsc->dsc_waiter))) {
DISPATCH_CLIENT_CRASH((uintptr_t)dq_state,
"dispatch_sync called on queue "
"already owned by current thread");
}
// Blocks submitted to the main thread MUST run on the main thread, and
// dispatch_async_and_wait also executes on the remote context rather than
// the current thread.
//
// For both these cases we need to save the frame linkage for the sake of
// _dispatch_async_and_wait_invoke
_dispatch_thread_frame_save_state(&dsc->dsc_dtf);
if (_dq_state_is_suspended(dq_state) ||
_dq_state_is_base_anon(dq_state)) {
dsc->dc_data = DISPATCH_WLH_ANON;
} else if (_dq_state_is_base_wlh(dq_state)) {
dsc->dc_data = (dispatch_wlh_t)dq;
} else {
_dispatch_wait_compute_wlh(upcast(dq)._dl, dsc);
}
if (dsc->dc_data == DISPATCH_WLH_ANON) {
dsc->dsc_override_qos_floor = dsc->dsc_override_qos =
(uint8_t)_dispatch_get_basepri_override_qos_floor();
_dispatch_thread_event_init(&dsc->dsc_event);
}
dx_push(dq, dsc, _dispatch_qos_from_pp(dsc->dc_priority));
_dispatch_trace_runtime_event(sync_wait, dq, 0);
if (dsc->dc_data == DISPATCH_WLH_ANON) {
_dispatch_thread_event_wait(&dsc->dsc_event); // acquire
} else if (!dsc->dsc_wlh_self_wakeup) {
_dispatch_event_loop_wait_for_ownership(dsc);
}
if (dsc->dc_data == DISPATCH_WLH_ANON) {
_dispatch_thread_event_destroy(&dsc->dsc_event);
// If _dispatch_sync_waiter_wake() gave this thread an override,
// ensure that the root queue sees it.
if (dsc->dsc_override_qos > dsc->dsc_override_qos_floor) {
_dispatch_set_basepri_override_qos(dsc->dsc_override_qos);
}
}
}
可以看到,死锁的部分注释
"dispatch_sync called on queue "
"already owned by current thread"
同步任务调起了一个已经被当前线程占用的队列
unlikely(_dq_state_drain_locked_by(dq_state, dsc->dsc_waiter))
这个触发的判断具体如下:
static inline bool
_dq_state_drain_locked_by(uint64_t dq_state, dispatch_tid tid)
{
return _dispatch_lock_is_locked_by((dispatch_lock)dq_state, tid);
}
static inline bool
_dispatch_lock_is_locked_by(dispatch_lock lock_value, dispatch_tid tid)
{
// equivalent to _dispatch_lock_owner(lock_value) == tid
return ((lock_value ^ tid) & DLOCK_OWNER_MASK) == 0;
}
#define DLOCK_OWNER_MASK ((dispatch_lock)0xfffffffc) //c = 1100
结合这个部分的源码,我们可以理解这个判断是这样的:
lock_value - > dq_state 是队列的状态
tid->是线程id。
队列的状态和线程的id按位异或,与上0xfffffffc也就是只有最后两位是0的 最后的结果为0 ,异或运算是相同为0 不同为1。
所以这里的判断一下将要调度的队列,和当前等待的队列是不是一个队列,如果相同则返回YES,造成了矛盾,产生了死锁。而注释的代码也很好的说明了这里:证明要调度的队列和当被锁住的线程 是一个。
五、异步函数dispatch_async源码分析
void
dispatch_async(dispatch_queue_t dq, dispatch_block_t work)
{
dispatch_continuation_t dc = _dispatch_continuation_alloc();
uintptr_t dc_flags = DC_FLAG_CONSUME;
dispatch_qos_t qos;
qos = _dispatch_continuation_init(dc, dq, work, 0, dc_flags);
_dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}
将任务封装成qos
,然后通过_dispatch_continuation_async
调用。
_dispatch_continuation_async
任务派发,push。
_dispatch_continuation_async(dispatch_queue_class_t dqu,
dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags)
{
#if DISPATCH_INTROSPECTION
if (!(dc_flags & DC_FLAG_NO_INTROSPECTION)) {
_dispatch_trace_item_push(dqu, dc);
}
#else
(void)dc_flags;
#endif
return dx_push(dqu._dq, dc, qos);
}
//dx_push
#define dx_push(x, y, z) dx_vtable(x)->dq_push(x, y, z)
dx_push本质上调用了dx_vtable的dq_push进一步查看,发现有好多个dq_push:
有串行的、并发的、全局队列等,我们先以并发的为例子,就去找
_dispatch_lane_concurrent_push
:
void
_dispatch_lane_concurrent_push(dispatch_lane_t dq, dispatch_object_t dou,
dispatch_qos_t qos)
{
// <rdar://problem/24738102&24743140> reserving non barrier width
// doesn't fail if only the ENQUEUED bit is set (unlike its barrier
// width equivalent), so we have to check that this thread hasn't
// enqueued anything ahead of this call or we can break ordering
if (dq->dq_items_tail == NULL &&
!_dispatch_object_is_waiter(dou) &&
!_dispatch_object_is_barrier(dou) &&
_dispatch_queue_try_acquire_async(dq)) {
return _dispatch_continuation_redirect_push(dq, dou, qos);
}
_dispatch_lane_push(dq, dou, qos);
}
我们通过符号断点调试并发队列,先进入到_dispatch_continuation_redirect_push
:
static void
_dispatch_continuation_redirect_push(dispatch_lane_t dl,
dispatch_object_t dou, dispatch_qos_t qos)
{
if (likely(!_dispatch_object_is_redirection(dou))) {
dou._dc = _dispatch_async_redirect_wrap(dl, dou);
} else if (!dou._dc->dc_ctxt) {
// find first queue in descending target queue order that has
// an autorelease frequency set, and use that as the frequency for
// this continuation.
dou._dc->dc_ctxt = (void *)
(uintptr_t)_dispatch_queue_autorelease_frequency(dl);
}
dispatch_queue_t dq = dl->do_targetq;
if (!qos) qos = _dispatch_priority_qos(dq->dq_priority);
dx_push(dq, dou, qos);
}
而这个方法最终又调用了dx_push
,而此时的队列类型通过调试为queue_pthread_root
,所以对应的dq_push的参数为_dispatch_root_queue_push
,它的具体实现我们进去看一下
void
_dispatch_root_queue_push(dispatch_queue_global_t rq, dispatch_object_t dou,
dispatch_qos_t qos)
{
#if DISPATCH_USE_KEVENT_WORKQUEUE
dispatch_deferred_items_t ddi = _dispatch_deferred_items_get();
if (unlikely(ddi && ddi->ddi_can_stash)) {
dispatch_object_t old_dou = ddi->ddi_stashed_dou;
dispatch_priority_t rq_overcommit;
rq_overcommit = rq->dq_priority & DISPATCH_PRIORITY_FLAG_OVERCOMMIT;
if (likely(!old_dou._do || rq_overcommit)) {
dispatch_queue_global_t old_rq = ddi->ddi_stashed_rq;
dispatch_qos_t old_qos = ddi->ddi_stashed_qos;
ddi->ddi_stashed_rq = rq;
ddi->ddi_stashed_dou = dou;
ddi->ddi_stashed_qos = qos;
_dispatch_debug("deferring item %p, rq %p, qos %d",
dou._do, rq, qos);
if (rq_overcommit) {
ddi->ddi_can_stash = false;
}
if (likely(!old_dou._do)) {
return;
}
// push the previously stashed item
qos = old_qos;
rq = old_rq;
dou = old_dou;
}
}
#endif
#if HAVE_PTHREAD_WORKQUEUE_QOS
if (_dispatch_root_queue_push_needs_override(rq, qos)) {
return _dispatch_root_queue_push_override(rq, dou, qos);
}
#else
(void)qos;
#endif
_dispatch_root_queue_push_inline(rq, dou, dou, 1);
}
符号断点接着跟踪来到_dispatch_root_queue_push_override
,然后进一步来到_dispatch_root_queue_push_inline
->_dispatch_root_queue_poke
->_dispatch_root_queue_poke_slow
这个方法又好长好多。里面通过pthread_create
创建线程
_dispatch_continuation_init
任务封装:
static inline dispatch_qos_t
_dispatch_continuation_init(dispatch_continuation_t dc,
dispatch_queue_class_t dqu, dispatch_block_t work,
dispatch_block_flags_t flags, uintptr_t dc_flags)
{
void *ctxt = _dispatch_Block_copy(work);
dc_flags |= DC_FLAG_BLOCK | DC_FLAG_ALLOCATED;
if (unlikely(_dispatch_block_has_private_data(work))) {
dc->dc_flags = dc_flags;
dc->dc_ctxt = ctxt;
// will initialize all fields but requires dc_flags & dc_ctxt to be set
return _dispatch_continuation_init_slow(dc, dqu, flags);
}
dispatch_function_t func = _dispatch_Block_invoke(work);
if (dc_flags & DC_FLAG_CONSUME) {
func = _dispatch_call_block_and_release;
}
return _dispatch_continuation_init_f(dc, dqu, ctxt, func, flags, dc_flags);
}
进行block的初始化。
小结下流程:
1、通过_dispatch_continuation_init
方法对任务和优先级进行封装;
2、然后调用dx_push,最终找到自己的对应的dq_push标记的函数去调用相关的方法,并发队列调用的是_dispatch_lane_concurrent_push
,最终调用_dispatch_root_queue_push
。
3、继续进行调用,最终找到_dispatch_root_queue_poke_slow
方法,进行线程的创建pthread_create
六、单例dispatch_once_t源码分析
找到源码
void
dispatch_once(dispatch_once_t *val, dispatch_block_t block)
{
dispatch_once_f(val, block, _dispatch_Block_invoke(block));
}
dispatch_once_f(dispatch_once_t *val, void *ctxt, dispatch_function_t func)
{
//这里转换了val的类型为dispatch_once_gate_t
dispatch_once_gate_t l = (dispatch_once_gate_t)val;
#if !DISPATCH_ONCE_INLINE_FASTPATH || DISPATCH_ONCE_USE_QUIESCENT_COUNTER
uintptr_t v = os_atomic_load(&l->dgo_once, acquire);
if (likely(v == DLOCK_ONCE_DONE)) {
return;
}
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
if (likely(DISPATCH_ONCE_IS_GEN(v))) {
return _dispatch_once_mark_done_if_quiesced(l, v);
}
#endif
#endif
if (_dispatch_once_gate_tryenter(l)) {
return _dispatch_once_callout(l, ctxt, func);
}
return _dispatch_once_wait(l);
}
这里有三个条件:
1、如果已经loaded,直接返回
2、如果第一次被调用,执行_dispatch_once_callout
3、如果正在执行,执行_dispatch_once_wait。
_dispatch_once_gate_tryenter进入:
static inline bool
_dispatch_once_gate_tryenter(dispatch_once_gate_t l)
{
return os_atomic_cmpxchg(&l->dgo_once, DLOCK_ONCE_UNLOCKED,
(uintptr_t)_dispatch_lock_value_for_self(), relaxed);
}
#define os_atomic_cmpxchg(p, e, v, m) \
({ _os_atomic_basetypeof(p) _r = (e); \
atomic_compare_exchange_strong_explicit(_os_atomic_c11_atomic(p), \
&_r, v, memory_order_##m, memory_order_relaxed); })
是不是已经没有加锁DLOCK_ONCE_UNLOCKED,没有加锁,进行call_out的操作,加锁的话要进行wait的等待。
_dispatch_once_callout实现
static void
_dispatch_once_callout(dispatch_once_gate_t l, void *ctxt,
dispatch_function_t func)
{
_dispatch_client_callout(ctxt, func);
_dispatch_once_gate_broadcast(l);
}
_dispatch_once_gate_broadcast:
tatic inline void
_dispatch_once_gate_broadcast(dispatch_once_gate_t l)
{
dispatch_lock value_self = _dispatch_lock_value_for_self();
uintptr_t v;
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
v = _dispatch_once_mark_quiescing(l);
#else
v = _dispatch_once_mark_done(l);
#endif
if (likely((dispatch_lock)v == value_self)) return;
_dispatch_gate_broadcast_slow(&l->dgo_gate, (dispatch_lock)v);
}
锁的处理,并且标记为完成。
单例的原理小结:
通过函数dispatch_once_f 对onceToken进行强转,转换成dispatch_once_gate_t类型,是一个锁。这个锁L 通过os_atomic_load函数获取锁的状态,如果此时为DLOCK_ONCE_UNLOCK,证明可以操作,进行call_out,操作完毕进行广播标记完成。
如果此时为DLOCK_ONCE_DONE,直接返回。
如果此时为LOCK状态,说明有任务正在执行,会进入等待状态。等待当前任务完成,获取锁
ps:这部分代码好困难,我自己也看的迷迷糊糊,先参考了挺多博客大致的进行一个梳理,后面再看看源码有新的更好的理解会再更新。(。・_・。)ノ
网友评论