美文网首页
vlfeat-sift+python+mac

vlfeat-sift+python+mac

作者: M_waterwaterwat | 来源:发表于2016-03-30 18:46 被阅读971次

    vlfeat主页:http://www.vlfeat.org/

    使用方法:command line 使用方法

    from:http://www.vlfeat.org/install-shell.html

    1.下载vlfeat二进制包解压

    2.在.bash_profile添加./vlfeat/bin/macui64/sift路径 详见链接

    3.因为我用的virtualenv 添加path一直有问题 不生成***.sift文件 后来直接在def process_image cmmd中用的绝对路径

    vlfeat-sift代码:

    from:http://www.maths.lth.se/matematiklth/personal/solem/downloads/vlfeat.py

    效果:我把ratio改小了一些

    from PIL import Image

    import os

    from numpy import *

    from pylab import *

    def process_image(imagename,resultname,params="--edge-thresh 10 --peak-thresh 5"):

    """ process an image and save the results in a file"""

    if imagename[-3:] != 'pgm':

    #create a pgm file

    im = Image.open(imagename).convert('L')

    im.save('tmp.pgm')

    imagename = 'tmp.pgm'

    cmmd = str("sift "+imagename+" --output="+resultname+

    " "+params)

    os.system(cmmd)

    print 'processed', imagename, 'to', resultname

    def read_features_from_file(filename):

    """ read feature properties and return in matrix form"""

    f = loadtxt(filename)

    return f[:,:4],f[:,4:] # feature locations, descriptors

    def write_features_to_file(filename,locs,desc):

    """ save feature location and descriptor to file"""

    savetxt(filename,hstack((locs,desc)))

    def plot_features(im,locs,circle=False):

    """ show image with features. input: im (image as array),

    locs (row, col, scale, orientation of each feature) """

    def draw_circle(c,r):

    t = arange(0,1.01,.01)*2*pi

    x = r*cos(t) + c[0]

    y = r*sin(t) + c[1]

    plot(x,y,'b',linewidth=2)

    imshow(im)

    if circle:

    [draw_circle([p[0],p[1]],p[2]) for p in locs]

    else:

    plot(locs[:,0],locs[:,1],'ob')

    axis('off')

    def match(desc1,desc2):

    """ for each descriptor in the first image,

    select its match in the second image.

    input: desc1 (descriptors for the first image),

    desc2 (same for second image). """

    desc1 = array([d/linalg.norm(d) for d in desc1])

    desc2 = array([d/linalg.norm(d) for d in desc2])

    dist_ratio = 0.6

    desc1_size = desc1.shape

    matchscores = zeros((desc1_size[0],1))

    desc2t = desc2.T #precompute matrix transpose

    for i in range(desc1_size[0]):

    dotprods = dot(desc1[i,:],desc2t) #vector of dot products

    dotprods = 0.9999*dotprods

    #inverse cosine and sort, return index for features in second image

    indx = argsort(arccos(dotprods))

    #check if nearest neighbor has angle less than dist_ratio times 2nd

    if arccos(dotprods)[indx[0]] < dist_ratio * arccos(dotprods)[indx[1]]:

    matchscores[i] = int(indx[0])

    return matchscores

    def appendimages(im1,im2):

    """ return a new image that appends the two images side-by-side."""

    #select the image with the fewest rows and fill in enough empty rows

    rows1 = im1.shape[0]

    rows2 = im2.shape[0]

    if rows1 < rows2:

    im1 = concatenate((im1,zeros((rows2-rows1,im1.shape[1]))), axis=0)

    elif rows1 > rows2:

    im2 = concatenate((im2,zeros((rows1-rows2,im2.shape[1]))), axis=0)

    #if none of these cases they are equal, no filling needed.

    return concatenate((im1,im2), axis=1)

    def plot_matches(im1,im2,locs1,locs2,matchscores,show_below=True):

    """ show a figure with lines joining the accepted matches

    input: im1,im2 (images as arrays), locs1,locs2 (location of features),

    matchscores (as output from 'match'), show_below (if images should be shown below). """

    im3 = appendimages(im1,im2)

    if show_below:

    im3 = vstack((im3,im3))

    # show image

    imshow(im3)

    # draw lines for matches

    cols1 = im1.shape[1]

    for i in range(len(matchscores)):

    if matchscores[i] > 0:

    plot([locs1[i,0], locs2[matchscores[i,0],0]+cols1], [locs1[i,1], locs2[matchscores[i,0],1]], 'c')

    axis('off')

    def match_twosided(desc1,desc2):

    """ two-sided symmetric version of match(). """

    matches_12 = match(desc1,desc2)

    matches_21 = match(desc2,desc1)

    ndx_12 = matches_12.nonzero()[0]

    #remove matches that are not symmetric

    for n in ndx_12:

    if matches_21[int(matches_12[n])] != n:

    matches_12[n] = 0

    return matches_12

    if __name__ == "__main__":

    process_image('box.pgm','tmp.sift')

    l,d = read_features_from_file('tmp.sift')

    im = array(Image.open('box.pgm'))

    figure()

    plot_features(im,l,True)

    gray()

    process_image('scene.pgm','tmp2.sift')

    l2,d2 = read_features_from_file('tmp2.sift')

    im2 = array(Image.open('scene.pgm'))

    m = match_twosided(d,d2)

    figure()

    plot_matches(im,im2,l,l2,m)

    gray()

    show()

    相关文章

      网友评论

          本文标题:vlfeat-sift+python+mac

          本文链接:https://www.haomeiwen.com/subject/pgcelttx.html