2.Number.isFinite() Number.isNaN()
ES5 在Number对象上,提供了Number.isFinite() 和 Number.isNaN()
isFinite用来检查一个数值是否为有限的
Number.isFinite(10) // true
Number.isFinite(NaN) // false
Number.isFinite(Infinity) // false
Number.isFinite('foo'); // false
Number.isFinite('15'); // false
Number.isFinite(true); // false
注意,如果参数类型不是数值,Number.isFinite一律返回false
Number.isNaN(NaN) // true
Number.isNaN(15) // false
Number.isNaN('15') // false
Number.isNaN(true) // false
Number.isNaN(9/NaN) // true
Number.isNaN('true' / 0) // true
Number.isNaN('true' / 'true') // true
如果参数类型不是NaN,Number.isNaN一律返回false
它们与传统的全局方法isFinite()和isNaN()的区别在于,传统方法先调用Number()将非数值的值转为数值,再进行判断,而这两个新方法只对数值有效,Number.isFinite()对于非数值一律返回false, Number.isNaN()只有对于NaN才返回true,非NaN一律返回false。
isFinite(25) // true
isFinite("25") // true
Number.isFinite(25) // true
Number.isFinite("25") // false
isNaN(NaN) // true
isNaN("NaN") // true
Number.isNaN(NaN) // true
Number.isNaN("NaN") // false
Number.isNaN(1) // false
3.Number.parseInt() Number.parseFloat()
ES6 将全局方法parseInt()和parseFloat(),移植到Number对象上面,行为完全保持不变
这样做的目的,是逐步减少全局性方法,使得语言逐步模块化。
Number.isInteger()
Number.isInteger 用来判断一个数值是否为整数
Number.isInteger(25) // true
Number.isInteger(25.000) //true
Number.isInteger(25.1) //false
Number.isInteger(true) // false
Number.isInteger('12') // false
注意,由于 JavaScript 采用 IEEE 754 标准,数值存储为64位双精度格式,数值精度最多可以达到 53 个二进制位(1 个隐藏位与 52 个有效位)。如果数值的精度超过这个限度,第54位及后面的位就会被丢弃,这种情况下,Number.isInteger可能会误判。
Number.isInteger(3.0000000000000002) // true
上面代码中,Number.isInteger的参数明明不是整数,但是会返回true。原因就是这个小数的精度达到了小数点后16个十进制位,转成二进制位超过了53个二进制位,导致最后的那个2被丢弃了。
类似的情况还有,如果一个数值的绝对值小于Number.MIN_VALUE(5E-324),即小于 JavaScript 能够分辨的最小值,会被自动转为 0。这时,Number.isInteger也会误判。
Number.isInteger(5E-324) // false
Number.isInteger(5E-325) // true
总之,如果对数据精度的要求较高,不建议使用Number.isInteger()判断一个数值是否为整数。
6.安全整数和Number.isSafeInteger()
JavaScript 能够准确表示的整数范围在-253到253之间(不含两个端点),超过这个范围,无法精确表示这个值。
Math.pow(2, 53) // 9007199254740992
9007199254740992 // 9007199254740992
9007199254740993 // 9007199254740992
Math.pow(2, 53) === Math.pow(2, 53) + 1
// true
上面代码中,超出 2 的 53 次方之后,一个数就不精确了。
ES6 引入了Number.MAX_SAFE_INTEGER和Number.MIN_SAFE_INTEGER这两个常量,用来表示这个范围的上下限。
Number.MAX_SAFE_INTEGER === Math.pow(2, 53) - 1
// true
Number.MAX_SAFE_INTEGER === 9007199254740991
// true
Number.MIN_SAFE_INTEGER === -Number.MAX_SAFE_INTEGER
// true
Number.MIN_SAFE_INTEGER === -9007199254740991
// true
Number.isSafeInteger()则是用来判断一个整数是否落在这个范围之内。
实际使用这个函数时,需要注意。验证运算结果是否落在安全整数的范围内,不要只验证运算结果,而要同时验证参与运算的每个值。
Number.isSafeInteger(9007199254740993)
// false
Number.isSafeInteger(990)
// true
Number.isSafeInteger(9007199254740993 - 990)
// true
9007199254740993 - 990
// 返回结果 9007199254740002
// 正确答案应该是 9007199254740003
上面代码中,9007199254740993不是一个安全整数,但是Number.isSafeInteger会返回结果,显示计算结果是安全的。这是因为,这个数超出了精度范围,导致在计算机内部,以9007199254740992的形式储存。
9007199254740993 === 9007199254740992
// true
Math扩展
Math.trunc
Math.trunc方法用于去除一个数的小数部分,返回整数部分。
Math.trunc(4.1) // 4
Math.trunc(4.9) // 4
Math.trunc(-4.1) // -4
Math.trunc(-4.9) // -4
Math.trunc(-0.1234) // -0
对于非数值,Math.trunc内部使用Number方法将其先转为数值。
Math.trunc('123.456') // 123
Math.trunc(true) //1
Math.trunc(false) // 0
Math.trunc(null) // 0
对于空值和无法截取整数的值,返回NaN。
Math.trunc(NaN); // NaN
Math.trunc('foo'); // NaN
Math.trunc(); // NaN
Math.trunc(undefined) // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.trunc = Math.trunc || function(x) {
return x < 0 ? Math.ceil(x) : Math.floor(x);
};
Math.sign()
Math.sign 用来判断一个数到底是正数,负数,还是零,对于非数值,会先将其转化为数值
它会返回五种值。
参数为正数,返回+1;
参数为负数,返回-1;
参数为 0,返回0;
参数为-0,返回-0;
其他值,返回NaN。
Math.sign(-5) // -1
Math.sign(5) // +1
Math.sign(0) // +0
Math.sign(-0) // -0
Math.sign(NaN) // NaN
如果参数是非数值,会自动转为数值。对于那些无法转为数值的值,会返回NaN。
Math.sign('') // 0
Math.sign(true) // +1
Math.sign(false) // 0
Math.sign(null) // 0
Math.sign('9') // +1
Math.sign('foo') // NaN
Math.sign() // NaN
Math.sign(undefined) // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.sign = Math.sign || function(x) {
x = +x; // convert to a number
if (x === 0 || isNaN(x)) {
return x;
}
return x > 0 ? 1 : -1;
};
网友评论