1.为什么要有图
-
前面我们学了线性表和树
-
线性表局限于一个直接前驱和一个直接后继的关系
-
树也只能有一个直接前驱也就是父节点
-
当我们需要表示多对多的关系时, 这里我们就用到了图。
2. 图的举例说明
图图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。
3. 图的常用概念
-
顶点(vertex)
-
边(edge)
-
路径
-
无向图
-
有向图
-
带权图
图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。
4. 邻接矩阵
邻接矩阵邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于 n 个顶点的图而言,矩阵是的 row 和 col 表示的是 1....n个点。
5. 邻接表
邻接表
邻接矩阵需要为每个顶点都分配 n 个边的空间,其实有很多边都是不存在,会造成空间的一定损失.
邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
6. 实现下图结构
图结构(1) 存储顶点 String 使用 ArrayList
(2) 保存矩阵 int[][] edges
public class Graph {
private ArrayList<String> vertexList; //存储顶点集合
private int[][] edges; //存储图对应的邻结矩阵
private int numOfEdges; //表示边的数目
//定义给数组boolean[], 记录某个结点是否被访问
private boolean[] isVisited;
//插入结点
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
/**
* 添加边
* @param v1 表示点的下标即使第几个顶点 "A"-"B" "A"->0 "B"->1
* @param v2 第二个顶点对应的下标
* @param weight 表示
*/
public void insertEdge(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}
7. 图的深度优先遍历
所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,
一般有两种访问策略:
- (1)深度优先遍历
- (2)广度优先遍历
7.1 深度优先遍历基本思想
-
- 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问
第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:
每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
- 我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
- 显然,深度优先搜索是一个递归的过程
7.2 深度优先遍历算法步骤
-
访问初始结点 v,并标记结点 v 为已访问。
-
查找结点 v 的第一个邻接结点 w。
-
若 w 存在,则继续执行 4,如果 w 不存在,则回到第 1 步,将从 v 的下一个结点继续。
-
若 w 未被访问,对 w 进行深度优先遍历递归(即把 w 当做另一个 v,然后进行步骤 123)。
-
查找结点 v 的 w 邻接结点的下一个邻接结点,转到步骤 3。
7.3 代码实现
//深度优先遍历算法
//i 第一次就是 0
private void dfs(boolean[] isVisited, int i) {
//首先我们访问该结点,输出
System.out.print(getValueByIndex(i) + "->");
//将结点设置为已经访问
isVisited[i] = true;
//查找结点i的第一个邻接结点w
int w = getFirstNeighbor(i);
while(w != -1) {//说明有
if(!isVisited[w]) {
dfs(isVisited, w);
}
//如果w结点已经被访问过
w = getNextNeighbor(i, w);
}
}
//对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs
public void dfs() {
isVisited = new boolean[vertexList.size()];
//遍历所有的结点,进行dfs[回溯]
for(int i = 0; i < getNumOfVertex(); i++) {
if(!isVisited[i]) {
dfs(isVisited, i);
}
}
}
//返回结点的个数
public int getNumOfVertex() {
return vertexList.size();
}
8. 图的广度优先遍历
8.1 广度优先遍历基本思想
- 图的广度优先搜索(Broad First Search) 。
- 类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点
8.2 广度优先遍历算法步骤
- 访问初始结点 v 并标记结点 v 为已访问。
- 结点 v 入队列
- 当队列非空时,继续执行,否则算法结束。
- 出队列,取得队头结点 u。
- 查找结点 u 的第一个邻接结点 w。
-
- 若结点 u 的邻接结点 w 不存在,则转到步骤 3;否则循环执行以下三个步骤:
-
6.1 若结点 w 尚未被访问,则访问结点 w 并标记为已访问。
-
6.2 结点 w 入队列
-
6.3 查找结点 u 的继 w 邻接结点后的下一个邻接结点 w,转到步骤 6。
8.3 代码实现
//对一个结点进行广度优先遍历的方法
private void bfs(boolean[] isVisited, int i) {
int u ; // 表示队列的头结点对应下标
int w ; // 邻接结点w
//队列,记录结点访问的顺序
LinkedList queue = new LinkedList();
//访问结点,输出结点信息
System.out.print(getValueByIndex(i) + "=>");
//标记为已访问
isVisited[i] = true;
//将结点加入队列
queue.addLast(i);
while( !queue.isEmpty()) {
//取出队列的头结点下标
u = (Integer)queue.removeFirst();
//得到第一个邻接结点的下标 w
w = getFirstNeighbor(u);
while(w != -1) {//找到
//是否访问过
if(!isVisited[w]) {
System.out.print(getValueByIndex(w) + "=>");
//标记已经访问
isVisited[w] = true;
//入队
queue.addLast(w);
}
//以u为前驱点,找w后面的下一个邻结点
w = getNextNeighbor(u, w); //体现出我们的广度优先
}
}
}
//遍历所有的结点,都进行广度优先搜索
public void bfs() {
isVisited = new boolean[vertexList.size()];
for(int i = 0; i < getNumOfVertex(); i++) {
if(!isVisited[i]) {
bfs(isVisited, i);
}
}
}
网友评论