美文网首页
Flink-StreamTask启动流程分析

Flink-StreamTask启动流程分析

作者: WestC | 来源:发表于2020-12-24 10:20 被阅读0次

StreamTask是流作业的任务基类,通常一个流作业的task启动由该方法的invoke函数为入口,本文基于Flink1.11.0该类生命流程进行分析。

StreamTask的构造

StreamTask的的初始化构造方法主要对一些参数进行设置,如configuration,stateBackend,timeService等

protected StreamTask(
            Environment environment,
            @Nullable TimerService timerService,
            Thread.UncaughtExceptionHandler uncaughtExceptionHandler,
            StreamTaskActionExecutor actionExecutor,
            TaskMailbox mailbox) throws Exception {

        super(environment);

        this.configuration = new StreamConfig(getTaskConfiguration());
        this.recordWriter = createRecordWriterDelegate(configuration, environment);
        this.actionExecutor = Preconditions.checkNotNull(actionExecutor);
    // 创建处理器,用于异步执行各种请求,同时将processInput方法的执行放入待执行的任务队列
        this.mailboxProcessor = new MailboxProcessor(this::processInput, mailbox, actionExecutor);
        this.mailboxProcessor.initMetric(environment.getMetricGroup());
        this.mainMailboxExecutor = mailboxProcessor.getMainMailboxExecutor();
        this.asyncExceptionHandler = new StreamTaskAsyncExceptionHandler(environment);
        this.asyncOperationsThreadPool = Executors.newCachedThreadPool(
            new ExecutorThreadFactory("AsyncOperations", uncaughtExceptionHandler));
        // 创建stateBackend
        this.stateBackend = createStateBackend();

        this.subtaskCheckpointCoordinator = new SubtaskCheckpointCoordinatorImpl(
            stateBackend.createCheckpointStorage(getEnvironment().getJobID()),
            getName(),
            actionExecutor,
            getCancelables(),
            getAsyncOperationsThreadPool(),
            getEnvironment(),
            this,
            configuration.isUnalignedCheckpointsEnabled(),
            this::prepareInputSnapshot);

        // if the clock is not already set, then assign a default TimeServiceProvider
        if (timerService == null) {
            ThreadFactory timerThreadFactory = new DispatcherThreadFactory(TRIGGER_THREAD_GROUP, "Time Trigger for " + getName());
            this.timerService = new SystemProcessingTimeService(this::handleTimerException, timerThreadFactory);
        } else {
            this.timerService = timerService;
        }

        this.channelIOExecutor = Executors.newSingleThreadExecutor(new ExecutorThreadFactory("channel-state-unspilling"));
    }

该方法主要有如下流程:

*  -- invoke()
*        |
*        +----> Create basic utils (config, etc) and load the chain of operators
*        +----> operators.setup()  
*        +----> task specific init()
*        +----> initialize-operator-states()
*        +----> open-operators()
*        +----> run()
*        +----> close-operators()
*        +----> dispose-operators()
*        +----> common cleanup
*        +----> task specific cleanup()

总结起来task的运行主要分为三个主要部分:

  1. StreamTask初始化 ---- beforeInvoke
  2. 运行业务逻辑 ------ runMailboxLoop
  3. 关闭/资源清理 ----- afterInvoke

StreamTask初始化

​ 在beforeInvoke方法中,主要调用如下步骤:

生成operatorChain

​ Flink的task运行本质是执行业务逻辑(业务处理代码/处理函数),Flink将业务处理函数进行抽象为operator,通过operatorChain将业务代码串起来执行,完成业务逻辑的处理。后续笔者将针对operatorchain的生成单独分析。

调用具体task的init方法

init方法在StreamTask中是抽象方法,由具体的task进行覆写实现,通常该方法中会生成inputStreamPorcessor,完成数据的处理。 如OneInputStreamTask中的init如下:

public void init() throws Exception {
        StreamConfig configuration = getConfiguration();
        int numberOfInputs = configuration.getNumberOfInputs();

        if (numberOfInputs > 0) {
            CheckpointedInputGate inputGate = createCheckpointedInputGate();
            DataOutput<IN> output = createDataOutput();
            StreamTaskInput<IN> input = createTaskInput(inputGate, output);
            inputProcessor = new StreamOneInputProcessor<>(
                input,
                output,
                operatorChain);
        }
        headOperator.getMetricGroup().gauge(MetricNames.IO_CURRENT_INPUT_WATERMARK, this.inputWatermarkGauge);
        // wrap watermark gauge since registered metrics must be unique
        getEnvironment().getMetricGroup().gauge(MetricNames.IO_CURRENT_INPUT_WATERMARK, this.inputWatermarkGauge::getValue);
    }

operator的初始化和open

依次调用operatorChain中所有operator的初始化和open方法:

protected void initializeStateAndOpenOperators(StreamTaskStateInitializer streamTaskStateInitializer) throws Exception {
        for (StreamOperatorWrapper<?, ?> operatorWrapper : getAllOperators(true)) {
            StreamOperator<?> operator = operatorWrapper.getStreamOperator();
            operator.initializeState(streamTaskStateInitializer);
            operator.open();
        }
    }

运行业务逻辑

任务的处理逻辑主要有processInput方法来处理,其核心是调用的inputPorcessor的processInput方法来完成。

protected void processInput(MailboxDefaultAction.Controller controller) throws Exception {
        InputStatus status = inputProcessor.processInput();
        if (status == InputStatus.MORE_AVAILABLE && recordWriter.isAvailable()) {
            return;
        }
        if (status == InputStatus.END_OF_INPUT) {
            controller.allActionsCompleted();
            return;
        }
        CompletableFuture<?> jointFuture = getInputOutputJointFuture(status);
        MailboxDefaultAction.Suspension suspendedDefaultAction = controller.suspendDefaultAction();
        jointFuture.thenRun(suspendedDefaultAction::resume);
    }

关闭/资源清理

// close the head operators
operatorChain.closeOperators
// make sure no new timers can come
FutureUtils.forward(timerService.quiesce(), timersFinishedFuture);
// let mailbox execution reject all new letters from this point
mailboxProcessor.prepareClose
// processes the remaining mails; no new mails can be enqueued
mailboxProcessor.drain
// make sure all timers finish
timersFinishedFuture.get();
// make sure all buffered data is flushed
operatorChain.flushOutputs
// dispose the operators
disposeAllOperators  -> foreach (operator.dispose  --> stateHandler.dispose)

相关文章

网友评论

      本文标题:Flink-StreamTask启动流程分析

      本文链接:https://www.haomeiwen.com/subject/plapnktx.html