美文网首页
[kaggle系列 二] 使用决策树判断是否能从泰坦尼克号生还

[kaggle系列 二] 使用决策树判断是否能从泰坦尼克号生还

作者: bakaqian | 来源:发表于2017-09-16 15:59 被阅读726次

题目

连接:https://www.kaggle.com/c/titanic

简析

上一篇用了贝叶斯分类器,这次用决策树和随机森林试一试,不过最终的得分没有贝叶斯分类器高,好吧,说实话,感觉再用几个不同的机器学习方法应该结果也差不多,现在主要是试水,先搞懂基础的算法,然后再通过数据的处理与分析去优化结果。

决策树

我个人认为,决策树应该是比较好理解的机器学习算法了。其中心思想就是ifelse,存在很多个条件的时候,如果第一个条件是A,第二个条件是B…………就选择方案C。是一个很自然的方法,我们平常生活中也可能很常用,比如下图就是一个屌丝假日的日常决策树:



看起来是很简单的,但是要怎么应用到机器学习上,让它成为一个分类器呢?以本例中的问题来说,我知道每一个人的生还情况,还有他的各种属性(特征),我们要根据这些特征,来生成一颗决策树,最终到达叶子节点的时候,我们就知道对于某一系列的属性,最终是生还还是死亡,大概就是要生成这样一棵树(进行了简化):

中间还可以加很多其他属性,比如舱位信息之类的,最终,在筛完所有信息以后,你就可以通过当前训练数据给出一个概率,表示当前叶结点生还的概率。
接下来的问题是如何实现,选择条件的顺序是否影响结果,是不是可以随便选择条件呢?当然这里树的结构肯定会影响最终的结果,如何去构造一棵树呢?
这里需要用到一个信息熵的概念。熵这个东西应该大家都听说过,熵表明的是一个事物的混乱程度,熵越大,混乱程度越高,熵越小,表明混乱程度越低。信息熵的概念也是一样的,就是用来表明信息的混乱程度,我们选择一个树根的时候,最好的情况肯定是通过这个属性把数据分成几类以后,这些数据的熵越小越好,因为越小代表越有序,分类越清晰。那么我们要做的就是计算每个条件作为当前的根结点的信息熵,最终选一个最小的分类方法作为根节点,并以此类推,直到叶节点~
信息熵的计算公式如下:

其中,m是最终的分类结果,在本例中,就是生还与否两个类,pi是这个决策(分类)发生的概率。

随机森林

随机森林就是决策树的加强版,决策树这种方法,虽然有信息熵作为划分方法,但是实际上,如果划分到最精细的一层,那么就会出现过拟合的问题,泛化能力就比较差,往往训练数据上表现的比较好,对于新的数据,准确度就会变低。在我写的决策树代码就出现了这个问题,当时没多想,直接分到最后一层,结果准确率只有0.57。但是如果不分得更精细,准确度也不够高。可能需要进行大量的测试,才能找到一个平衡点,既不至于过拟合,也不至于欠拟合导致准确率太低。
随机森林提供了一个比较通用的解决方法,就是随机生成多个比较浅的决策树,当进行拟合的时候,让多个决策树进行投票,最终哪个分类的票高就决定是哪个类。

代码与结果

首先是决策树的代码,说实话,这代码写的比较丑,写起来不是很顺手,边学边写,逻辑搞的有点乱。最终准确率只有0.57416,这个我认为是划分过于精细导致模型过拟合了,在适当的分支进行剪枝效果可能会更好,当然,也有可能哪里写出了点小bug(笑)。

import csv
import os
import random
import math

class Node:
    def __init__(self):
        self.attr_name = ""
        self.value_type = ""
        self.classifier = None
        self.childrens = []
        self.entropy = 0

    def getNext(self, value):
        result = 0
        if self.value_type == 'disperse_data':
            pos = 0
            if self.classifier.has_key(value):
                pos = self.classifier[value]
            else:
                pos = random.randint(0, len(self.childrens) - 1) 
            result = self.childrens[pos]
        elif self.value_type == 'continuity_data':
            if value <= self.classifier:
                result = self.childrens[0]
            else:
                result = self.childrens[1] 
        return result
        

def readData(fileName):
    result = {}
    with open(fileName,'rb') as f:
        rows = csv.reader(f)
        for row in rows:
            if result.has_key('attr_list'):
                for i in range(len(result['attr_list'])):
                    key = result['attr_list'][i]
                    if not result.has_key(key):
                        result[key] = []
                    result[key].append(row[i])
            else:
                result['attr_list'] = row
    return result

def writeData(fileName, data):
    csvFile = open(fileName, 'w')
    writer = csv.writer(csvFile)
    n = len(data)
    for i in range(n):
        writer.writerow(data[i])
    csvFile.close()

def convertData(dataList):
    hashTable = {}
    count = 0
    for i in range(len(dataList)):
        if not hashTable.has_key(dataList[i]):
            hashTable[dataList[i]] = count
            count += 1
        dataList[i] = str(hashTable[dataList[i]])

def convertValueData(dataList):
    sumValue = 0.0
    count = 0
    for i in range(len(dataList)):
        if dataList[i] == "":
            continue
        sumValue += float(dataList[i])
        count += 1
        dataList[i] = float(dataList[i])
    avg = sumValue / count
    for i in range(len(dataList)):
        if dataList[i] == "":
            dataList[i] = avg

def dataPredeal(data):
    useDataList = ['Sex','Pclass', 'SibSp','Parch','Embarked']
    result = {}
    convertValueData(data["Age"])
    result['Age'] = data['Age']
    for i in range(len(useDataList)):
        attrName = useDataList[i]
        convertData(data[attrName])
        result[attrName] = data[attrName]
    return result

def calEntropy(dataList, labelList, isContinuity):
    if not isContinuity:
        count = 0.0
        attrCount = {}
        for i in range(len(dataList)):
            key = dataList[i]
            label = labelList[i]
            count += 1
            if not attrCount.has_key(key):
                attrCount[key] = {'0':0.0,'1':0.0}
            if not attrCount[key].has_key(label):
                attrCount[key][label] = 0.0
            attrCount[key][label] += 1.0
        entropy = 0
        for key in attrCount:
            p0 = attrCount[key]['0']/(attrCount[key]['0'] + attrCount[key]['1'])
            p1 = attrCount[key]['1']/(attrCount[key]['0'] + attrCount[key]['1'])
            v0 = 0 if p0 == 0 else p0*math.log(p0,2)
            v1 = 0 if p1 == 0 else p1*math.log(p1,2)
            temp = (attrCount[key]['0'] + attrCount[key]['1']) / count * (v0 + v1)
            entropy -= temp
        return entropy, None
    else:
        ageList = set([dataList[i] for i in range(len(dataList))])
        ageList = list(ageList)
        ageList.sort()
        minEntropy = 1
        targetAge = 0
        for i in range(len(ageList) - 1):
            avgAge = (ageList[i] + ageList[i + 1]) / 2
            count = 0.0
            left_sum = {'0':0.0,'1':0.0}
            right_sum = {'0':0.0,'1':0.0}
            for j in range(len(dataList)):
                if dataList[j] <= avgAge:
                    left_sum[labelList[j]] += 1.0
                else:
                    right_sum[labelList[j]] += 1.0
                count += 1.0
            pl = (left_sum['0'] + left_sum['1']) / count
            pl0 = left_sum['0']/(left_sum['0'] + left_sum['1'])
            pl1 = 1.0 - pl0
            pr = (right_sum['0'] + right_sum['1']) / count
            pr0 = right_sum['0']/(right_sum['0'] + right_sum['1'])
            pr1 = 1.0 - pr0
            vl0 = 0 if pl0 == 0 else pl0*math.log(pl0,2)
            vl1 = 0 if pl1 == 0 else pl1*math.log(pl1,2)
            vr0 = 0 if pr0 == 0 else pr0*math.log(pr0,2)
            vr1 = 0 if pr1 == 0 else pr1*math.log(pr1,2)
            entropy = - pl*(vl0 + vl1) - pr*(vr0 + vr1)
            if entropy < minEntropy:
                minEntropy = entropy
                targetAge = avgAge
        return minEntropy, targetAge

def checkFinal(data,labelList, root):
    diff_count = 0
    hash_key = {}
    attrName = ""
    for key in data:
        if not hash_key.has_key(key):
            hash_key[key] = True
            diff_count += 1
            attrName = key
        if diff_count > 1:
            break
    if diff_count > 1:
        return False
    root.attr_name = attrName
    root.value_type = 'continuity_data' if attrName == 'Age' else 'disperse_data'
    ageBoundary = None
    if attrName == 'Age':
        entropy,ageBoundary = calEntropy(data[attrName], labelList, True)
    statistics = {}
    for i in range(len(data[attrName])):
        key = data[attrName][i]
        if ageBoundary != None:
            key = 0 if key <= ageBoundary else 1
        if not statistics.has_key(key):
            statistics[key] = [0.0,0.0]
        pos = int(labelList[i])
        statistics[key][pos] += 1.0
    
    root.classifier = ageBoundary if attrName == 'Age' else {}
    root.childrens = [] if attrName != 'Age' else [0,0]
    count = 0
    for key in statistics:
        if ageBoundary == None:
            if not root.classifier.has_key(key):
                root.classifier[key] = count
                root.childrens.append(0)
                count += 1
            root.childrens[root.classifier[key]] = 0 if statistics[key][0] > statistics[key][1] else 1
        else:
            root.childrens[key] = 0 if statistics[key][0] > statistics[key][1] else 1
    return True

def deepPrint(deep, info):
    s = ''
    for i in range(deep):
        s += ' '
    s += 'deep:' + str(deep) + '   attr:' + info
    print s

def buildTree(data, labelList, deep=0):
    root = Node()
    if checkFinal(data, labelList, root) == True:
        #deepPrint(deep, root.attr_name)
        return root
    minEntropy = 1
    targetAttrName = ''
    continuityValueBoundary = None
    for key in data:
        entropy, targetAge = calEntropy(data[key], labelList, key == 'Age')
        if entropy < minEntropy:
            minEntropy = entropy
            targetAttrName = key
            continuityValueBoundary = targetAge
    root.attr_name = targetAttrName
    #deepPrint(deep, root.attr_name)
    if continuityValueBoundary != None:
        root.value_type = 'continuity_data'
        root.classifier = continuityValueBoundary
        root.childrens = [0,0]
    else:
        root.value_type = 'disperse_data'
        root.classifier = {}
        root.childrens = []
    subDatas = {}
    for i in range(len(data[targetAttrName])):
        key = data[targetAttrName][i]
        if continuityValueBoundary != None:
            if key <= root.classifier:
                key = 0
            else:
                key = 1
        if not subDatas.has_key(key):
            subDatas[key] = {'data':{},'labelList':[]}
        for k in data:
            if k != targetAttrName:
                if not subDatas[key]['data'].has_key(k):
                    subDatas[key]['data'][k] = []
                subDatas[key]['data'][k].append(data[k][i])
        subDatas[key]['labelList'].append(labelList[i])

    count = 0
    for key in subDatas:
        child = buildTree(subDatas[key]['data'], subDatas[key]['labelList'], deep+1)
        if root.value_type == 'continuity_data':
            root.childrens[key] = child
        else:
            root.classifier[key] = count
            root.childrens.append(child)
            count += 1
    return root
    
def train(train_data):
    x = dataPredeal(train_data)
    tree = buildTree(x, train_data['Survived'])
    return tree

def fit(tree, test_data, pos):
    result = tree
    while(result != 0 and result != 1):
        result = result.getNext(test_data[result.attr_name][pos])
    return [test_data['PassengerId'][pos],result]

def run():
    dataRoot = '../../kaggledata/titanic/'
    train_data = readData(dataRoot + 'train.csv')
    test_data = readData(dataRoot + 'test.csv')
    tree = train(train_data)
    result_list = []
    result_list.append(['PassengerId', 'Survived'])
    for i in range(len(test_data['PassengerId'])):
        result_list.append(fit(tree, test_data, i))
    writeData(dataRoot + 'result.csv', result_list)

run()

下面的代码用了sklearn库里的随机森林的方法,还是很方便的,效果也还行,准确率有0.74641,果然三个臭皮匠干死诸葛亮~

import csv
import os
import random
import math
from sklearn.ensemble import RandomForestClassifier

def readData(fileName):
    result = {}
    with open(fileName,'rb') as f:
        rows = csv.reader(f)
        for row in rows:
            if result.has_key('attr_list'):
                for i in range(len(result['attr_list'])):
                    key = result['attr_list'][i]
                    if not result.has_key(key):
                        result[key] = []
                    result[key].append(row[i])
            else:
                result['attr_list'] = row
    return result

def writeData(fileName, data):
    csvFile = open(fileName, 'w')
    writer = csv.writer(csvFile)
    n = len(data)
    for i in range(n):
        writer.writerow(data[i])
    csvFile.close()

def convertData(dataList):
    hashTable = {}
    count = 0
    for i in range(len(dataList)):
        if not hashTable.has_key(dataList[i]):
            hashTable[dataList[i]] = count
            count += 1
        dataList[i] = str(hashTable[dataList[i]])

def convertValueData(dataList):
    sumValue = 0.0
    count = 0
    for i in range(len(dataList)):
        if dataList[i] == "":
            continue
        sumValue += float(dataList[i])
        count += 1
        dataList[i] = float(dataList[i])
    avg = sumValue / count
    for i in range(len(dataList)):
        if dataList[i] == "":
            dataList[i] = avg

def dataPredeal(data):
    useDataList = ['Sex','Pclass', 'SibSp','Parch','Embarked']
    convertValueData(data["Age"])
    for i in range(len(useDataList)):
        attrName = useDataList[i]
        convertData(data[attrName])
    
def train(train_data):
    dataPredeal(train_data)
    useList = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch']
    x = []
    y = []
    for i in range(len(train_data['Survived'])):
        item = []
        for j in range(len(useList)):
            item.append(train_data[useList[j]][i])
        x.append(item)
        y.append(train_data['Survived'][i])
    clf = RandomForestClassifier().fit(x,y)
    return clf

def predict(clf, test_data, pos):
    x = [[]]
    useList = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch']
    for i in range(len(useList)):
        x[0].append(test_data[useList[i]][pos])
    result = clf.predict(x)
    return [test_data['PassengerId'][pos],int(result[0])]

def run():
    dataRoot = '../../kaggledata/titanic/'
    train_data = readData(dataRoot + 'train.csv')
    test_data = readData(dataRoot + 'test.csv')
    clf = train(train_data) 
    dataPredeal(test_data)
    result_list = []
    result_list.append(['PassengerId', 'Survived'])
    for i in range(len(test_data['PassengerId'])):
        result_list.append(predict(clf, test_data, i))
        print 'cal:' + str(i)
    writeData(dataRoot + 'result.csv', result_list)

run()

相关文章

网友评论

      本文标题:[kaggle系列 二] 使用决策树判断是否能从泰坦尼克号生还

      本文链接:https://www.haomeiwen.com/subject/pltusxtx.html