美文网首页
HashMap实现原理

HashMap实现原理

作者: 境里婆娑 | 来源:发表于2018-01-18 17:39 被阅读0次

    HashMap概述

    HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变

    HashMap的数据结构

    在Java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。

    从上图中可以看出,HashMap底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个HashMap的时候,就会初始化一个数组。

    /**

    * The table, resized as necessary. Length MUST Always be a power of two.

     */

    transientEntry[] table;

    static class Entry implements Map.Entry {

        finalK key;

        V value;

        Entry next;

        finalinthash;

        ……

    }

    可以看出,Entry就是数组中的元素,每个 Map.Entry 其实就是一个key-value对,它持有一个指向下一个元素的引用,这就构成了链表。

    HashMap的存取实现

    public V put(K key, V value) {

        // HashMap允许存放null键和null值。

        // 当key为null时,调用putForNullKey方法,将value放置在数组第一个位置。 

        if(key == null)

            return putForNullKey(value);

        // 根据key的keyCode重新计算hash值。

        inthash = hash(key.hashCode());

        // 搜索指定hash值在对应table中的索引。

        inti = indexFor(hash, table.length);

        // 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素。

        for(Entry e = table[i]; e != null; e = e.next) {

            Object k;

            if(e.hash == hash && ((k = e.key) == key || key.equals(k))) {

                V oldValue = e.value;

                e.value = value;

                e.recordAccess(this);

                returnoldValue;

            }

        }

        // 如果i索引处的Entry为null,表明此处还没有Entry。

        modCount++;

        // 将key、value添加到i索引处。

        addEntry(hash, key, value, i);

        returnnull;

    }

    addEntry(hash, key, value, i)方法根据计算出的hash值,将key-value对放在数组table的i索引处。addEntry 是 HashMap 提供的一个包访问权限的方法,代码如下:voidaddEntry(inthash, K key, V value, intbucketIndex) {

        // 获取指定 bucketIndex 索引处的 Entry 

        Entry e = table[bucketIndex];

        // 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry 

        table[bucketIndex] = newEntry(hash, key, value, e);

        // 如果 Map 中的 key-value 对的数量超过了极限

        if(size++ >= threshold)

        // 把 table 对象的长度扩充到原来的2倍。

            resize(2* table.length);

    }

    hash(int h)方法根据key的hashCode重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的hash冲突。

    staticinthash(inth) {

        h ^= (h >>> 20) ^ (h >>> 12);

        returnh ^ (h >>> 7) ^ (h >>> 4); 

    }

    我们可以看到在HashMap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的 元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。

    对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,在HashMap中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:

    staticintindexFor(inth, intlength) { 

        returnh & (length-1);

    }

    这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 的 n 次方,这是HashMap在速度上的优化。在 HashMap 构造器中有如下代码:

    intcapacity = 1;

        while(capacity < initialCapacity) 

            capacity <<= 1;

    这段代码保证初始化时HashMap的容量总是2的n次方,即底层数组的长度总是为2的n次方。

    当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

    这看上去很简单,其实比较有玄机的,我们举个例子来说明:

    假设数组长度分别为15和16,优化后的hash码分别为8和9,那么&运算后的结果如下:

    h & (table.length-1) hashtable.length-1

    8 & (15-1):0100 & 1110= 0100

    9 & (15-1):0101&1110= 0100

    8 & (16-1):0100&1111= 0100

    9 & (16-1):0101&1111= 0101

    从上面的例子中可以看出:当它们和15-1(1110)“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到数组中的同一个位置上形成链表,那么查询的时候就需要遍历这个链 表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hash值会与15-1(1110)进行“与”,那么最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!而当数组长度为16时,即为2的n次方时,2n-1得到的二进制数的每个位上的值都为1,这使得在低位上&时,得到的和原hash的低位相同,加之hash(int h)方法对key的hashCode的进一步优化,加入了高位计算,就使得只有相同的hash值的两个值才会被放到数组中的同一个位置上形成链表。

    所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。

    根据上面 put 方法的源代码可以看出,当程序试图将一个key-value对放入HashMap中时,程序首先根据该 key 的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有 Entry 的 value,但key不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部——具体说明继续看 addEntry() 方法的说明。

    读取

    publicV get(Object key) {

        if(key == null)

            returngetForNullKey();

        inthash = hash(key.hashCode());

        for(Entry e = table[indexFor(hash, table.length)];

            e != null;

            e = e.next) {

            Object k;

            if(e.hash == hash && ((k = e.key) == key || key.equals(k))) 

                returne.value;

        }

        returnnull;

    }

    归纳

    简单地说,HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry时,

    也会根据hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Entry。

    HashMap的resize(rehash)

    当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,这是一个常用的操作,而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。

    那么HashMap什么时候进行扩容呢?当HashMap中的元素个数超过数组大小loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中元素个数超过160.75=12的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

    HashMap的性能参数

    HashMap 包含如下几个构造器:

    HashMap():构建一个初始容量为 16,负载因子为 0.75 的 HashMap。

    ashMap(int initialCapacity):构建一个初始容量为 initialCapacity,负载因子为 0.75 的 HashMap。

    HashMap(int initialCapacity, float loadFactor):以指定初始容量、指定的负载因子创建一个 HashMap。

    HashMap的基础构造器HashMap(int initialCapacity, float loadFactor)带有两个参数,它们是初始容量initialCapacity和负载因子loadFactor。

    负载因子loadFactor衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。

    HashMap的实现中,通过threshold字段来判断HashMap的最大容量:

    1threshold = (int)(capacity * loadFactor);

    结合负载因子的定义公式可知,threshold就是在此loadFactor和capacity对应下允许的最大元素数目,超过这个数目就重新resize,以降低实际的负载因子。默认的的负载因子0.75是对空间和时间效率的一个平衡选择。当容量超出此最大容量时, resize后的HashMap容量是容量的两倍:

    Fail-Fast机制

    我们知道java.util.HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略。

    这一策略在源码中的实现是通过modCount域,modCount顾名思义就是修改次数,对HashMap内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器的expectedModCount。

    HashIterator() {

        expectedModCount = modCount;

        if(size > 0) { // advance to first entry

        Entry[] t = table;

        while(index < t.length && (next = t[index++]) == null) 

            ;

        }

    }

    在迭代过程中,判断modCount跟expectedModCount是否相等,如果不相等就表示已经有其他线程修改了Map:

    注意到modCount声明为volatile,保证线程之间修改的可见性。

    finalEntry nextEntry() {

        if(modCount != expectedModCount)

            thrownewConcurrentModificationException();

    在HashMap的API中指出:

    由所有HashMap类的“collection 视图方法”所返回的迭代器都是快速失败的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的 remove 方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。

    注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。

    转载 http://www.importnew.com/16301.html

    相关文章

      网友评论

          本文标题:HashMap实现原理

          本文链接:https://www.haomeiwen.com/subject/pmmwoxtx.html