一、基本概念
RxJava的两个关键词:异步、简洁。RxJava的异步实现,是通过一种扩展的观察者模式来实现。
RxJava 有四个基本概念:
- Observable (可观察者,即被观察者)
- Observer (观察者)
- subscribe (订阅)
- 事件
Observable 和 Observer 通过 subscribe() 方法实现订阅关系,从而 Observable 可以在需要的时候发出事件来通知 Observer。与传统观察者模式不同, RxJava 的事件回调方法除了普通事件 onNext()
之外,还定义了两个特殊的事件:onCompleted()
和 onError()
。
RxAndroid
- 是RxJava针对Android平台的一个扩展,用于Android开发
- 提供响应式扩展组件快、易于开发Android应用
二、基本实现
基于以上的概念, RxJava 的基本实现主要有三点:
1、创建 Observer
Observer即观察者,它决定事件触发的时候将有怎样的行为。
public interface Observer<T> {
void onCompleted();
void onError(Throwable e);
void onNext(T t);
}
除了 Observer 接口之外,RxJava 还内置了一个实现了 Observer 的抽象类:Subscriber。 Subscriber 对 Observer 接口进行了一些扩展,但他们的基本使用方式是完全一样的:
public abstract class Subscriber<T> implements Observer<T>, Subscription {
...
@Override
public final void unsubscribe() {
subscriptions.unsubscribe();
}
@Override
public final boolean isUnsubscribed() {
return subscriptions.isUnsubscribed();
}
public void onStart() {
}
...
}
public interface Subscription {
void unsubscribe();
boolean isUnsubscribed();
}
Subscriber和Observer的区别主要有两点:
-
onStart()
: 这是 Subscriber 增加的方法。它会在 subscribe 刚开始,而事件还未发送之前被调用,可以用于做一些准备工作,例如数据的清零或重置。这是一个可选方法,默认情况下它的实现为空。需要注意的是,如果对准备工作的线程有要求(例如弹出一个显示进度的对话框,这必须在主线程执行), onStart() 就不适用了,因为它总是在 subscribe 所发生的线程被调用,而不能指定线程。 -
unsubscribe()
: 用于取消订阅。在这个方法被调用后,Subscriber 将不再接收事件。一般在这个方法调用前,可以使用isUnsubscribed()
先判断一下状态。unsubscribe()
这个方法很重要,因为在 subscribe() 之后, Observable 会持有 Subscriber 的引用,这个引用如果不能及时被释放,将有内存泄露的风险。所以最好保持一个原则:要在不再使用的时候尽快在合适的地方(例如 onPause() onStop() 等方法中)调用 unsubscribe() 来解除引用关系,以避免内存泄露的发生。
2、创建 Observable
Observable 即被观察者,它决定什么时候触发什么事件。 RxJava 使用 create(OnSubscribe<T> f) Observable<T>
方法来创建一个 Observable ,并为它定义事件触发规则:
//Action接口是个空接口
public interface Action0 extends Action {
void call();
}
public interface Action1<T> extends Action {
void call(T t);
}
public interface Action2<T1, T2> extends Action {
void call(T1 t1, T2 t2);
}
public interface OnSubscribe<T> extends Action1<Subscriber<? super T>> {
}
Observable observable = Observable.create(new Observable.OnSubscribe<String>() {
//被订阅的时候调用,subscriber就是订阅者,见下面
@Override
public void call(Subscriber<? super String> subscriber) {
subscriber.onNext("Hello");
subscriber.onNext("Hi");
subscriber.onNext("Aloha");
subscriber.onCompleted();
}
});
create
方法是 RxJava 最基本的创造事件序列的方法。其他快捷创建事件队列方法:
-
just(T...) Observable<T>
将传入的参数依次发送出来 -
from(T[]) Observable<T>
/from(Iterable<? extends T>) Observable<T>
将传入的数组或 Iterable 拆分成具体对象后,依次发送出来
3、Subscribe (订阅)
创建了 Observable 和 Observer 之后,再用 subscribe()方法将它们联结起来,整条链子就可以工作了。代码形式很简单:
observable.subscribe(observer);
// 或者:
observable.subscribe(subscriber);
Obervable.subscribe(Subscriber) 的内部实现是这样的(仅核心代码)
public Subscription subscribe(Subscriber subscriber) {
...
subscriber.onStart();
onSubscribe.call(subscriber);//被订阅的时候,调用call方法
return subscriber;
...
}
1、Observable方法
subscribe(Subscriber<? super T> subscriber) Subscription
subscribe(Action1<? super T> onNext) Subscription
subscribe(Action1<? super T> onNext, Action1<Throwable> onError) Subscription
2、不完整定义的回调
subscribe() 还支持不完整定义的回调,RxJava 会自动根据定义创建出Subscriber 。形式如下:
Action1<String> onNextAction = new Action1<String>() {
// onNext()
@Override
public void call(String s) {
Log.d(tag, s);
}
};
Action1<Throwable> onErrorAction = new Action1<Throwable>() {
// onError()
@Override
public void call(Throwable throwable) {
// Error handling
}
};
Action0 onCompletedAction = new Action0() {
// onCompleted()
@Override
public void call() {
Log.d(tag, "completed");
}
};
// 自动创建 Subscriber ,并使用 onNextAction 来定义 onNext()
observable.subscribe(onNextAction);
// 自动创建 Subscriber ,并使用 onNextAction 和 onErrorAction 来定义 onNext() 和 onError()
observable.subscribe(onNextAction, onErrorAction);
// 自动创建 Subscriber ,并使用 onNextAction、 onErrorAction 和 onCompletedAction 来定义 onNext()、 onError() 和 onCompleted()
observable.subscribe(onNextAction, onErrorAction, onCompletedAction);
简单解释一下这段代码中出现的 Action1 和 Action0。 Action0 是 RxJava 的一个接口,它只有一个方法 call(),这个方法是无参无返回值的;由于 onCompleted() 方法也是无参无返回值的,因此 Action0 可以被当成一个包装对象,将 onCompleted() 的内容打包起来将自己作为一个参数传入 subscribe() 以实现不完整定义的回调。这样其实也可以看做将 onCompleted() 方法作为参数传进了 subscribe(),相当于其他某些语言中的『闭包』。 Action1 也是一个接口,它同样只有一个方法 call(T param),这个方法也无返回值,但有一个参数;与 Action0 同理,由于 onNext(T obj) 和 onError(Throwable error) 也是单参数无返回值的,因此 Action1 可以将 onNext(obj) 和 onError(error) 打包起来传入 subscribe() 以实现不完整定义的回调。事实上,虽然 Action0 和 Action1 在 API 中使用最广泛,但 RxJava 是提供了多个 ActionX 形式的接口 (例如 Action2, Action3) 的,它们可以被用以包装不同的无返回值的方法。
注:正如前面所提到的,Observer 和 Subscriber 具有相同的角色,而且 Observer 在 subscribe() 过程中最终会被转换成 Subscriber 对象,因此,从这里开始,后面的描述我将用 Subscriber 来代替 Observer ,这样更加严谨。
4、场景示例
4.1、打印字符串数组
将字符串数组 names 中的所有字符串依次打印出来:
String[] names = ...;
Observable.from(names)
.subscribe(new Action1<String>() {
@Override
public void call(String name) {
Log.d(tag, name);
}
});
4.2、由 id 取得图片并显示
由指定的一个 drawable 文件 id drawableRes 取得图片,并显示在 ImageView 中,并在出现异常的时候打印 Toast 报错:
int drawableRes = ...;
ImageView imageView = ...;
Observable.create(new OnSubscribe<Drawable>() {
@Override
public void call(Subscriber<? super Drawable> subscriber) {
Drawable drawable = getTheme().getDrawable(drawableRes));
subscriber.onNext(drawable);
subscriber.onCompleted();
}
}).subscribe(new Observer<Drawable>() {
@Override
public void onNext(Drawable drawable) {
imageView.setImageDrawable(drawable);
}
@Override
public void onCompleted() {
}
@Override
public void onError(Throwable e) {
Toast.makeText(activity, "Error!", Toast.LENGTH_SHORT).show();
}
});
在 RxJava 的默认规则中,事件的发出和消费都是在同一个线程的。也就是说,如果只用上面的方法,实现出来的只是一个同步的观察者模式。观察者模式本身的目的就是『后台处理,前台回调』的异步机制,因此异步对于 RxJava 是至关重要的。而要实现异步,则需要用到 RxJava 的另一个概念: Scheduler 。
三、线程控制 —— Scheduler (一)
在不指定线程的情况下, RxJava 遵循的是线程不变的原则,即:在哪个线程调用 subscribe(),就在哪个线程生产事件;在哪个线程生产事件,就在哪个线程消费事件。如果需要切换线程,就需要用到 Scheduler (调度器)。
1、Scheduler 的 API (一)
在RxJava 中,Scheduler ——调度器,相当于线程控制器,RxJava 通过它来指定每一段代码应该运行在什么样的线程。
-
Schedulers.immediate()
: 在当前线程运行。这是默认的 Scheduler。 -
Schedulers.newThread()
: 总是启用新线程,并在新线程执行操作。 -
Schedulers.io()
: I/O 操作(读写文件、读写数据库、网络信息交互等)所使用的 Scheduler。行为模式和 newThread() 差不多,区别在于 io() 的内部实现是是用一个无数量上限的线程池,可以重用空闲的线程,因此多数情况下 io() 比 newThread() 更有效率。不要把计算工作放在 io() 中,可以避免创建不必要的线程。 -
Schedulers.computation()
: 计算所使用的 Scheduler。这个计算指的是 CPU 密集型计算,即不会被 I/O 等操作限制性能的操作,例如图形的计算。这个 Scheduler 使用的固定的线程池,大小为 CPU 核数。不要把 I/O 操作放在 computation() 中,否则 I/O 操作的等待时间会浪费 CPU。 -
AndroidSchedulers.mainThread()
:在 Android 主线程运行。
有了这几个 Scheduler ,就可以使用 subscribeOn
和 observeOn
两个方法来对线程进行控制了。
-
subscribeOn(Scheduler scheduler) Observable<T>
: 指定 subscribe() 所发生的线程,即 Observable.OnSubscribe 被激活时所处的线程。或者叫做事件产生的线程。 -
observeOn(Scheduler scheduler) Observable<T>
: 指定 Subscriber 所运行在的线程。或者叫做事件消费的线程。
前面提到的由图片 id 取得图片并显示的例子:
int drawableRes = ...;
ImageView imageView = ...;
Observable.create(new OnSubscribe<Drawable>() {
@Override
public void call(Subscriber<? super Drawable> subscriber) {
Drawable drawable = getTheme().getDrawable(drawableRes));
subscriber.onNext(drawable);
subscriber.onCompleted();
}
})
.subscribeOn(Schedulers.io()) // 指定 subscribe() 发生在 IO 线程
.observeOn(AndroidSchedulers.mainThread()) // 指定 Subscriber 的回调发生在主线程
.subscribe(new Observer<Drawable>() {
@Override
public void onNext(Drawable drawable) {
imageView.setImageDrawable(drawable);
}
@Override
public void onCompleted() {
}
@Override
public void onError(Throwable e) {
Toast.makeText(activity, "Error!", Toast.LENGTH_SHORT).show();
}
});
那么,加载图片将会发生在 IO 线程,而设置图片则被设定在了主线程。这就意味着,即使加载图片耗费了几十甚至几百毫秒的时间,也不会造成丝毫界面的卡顿。适用于多数的 『后台线程取数据,主线程显示』的程序策略。
四、变换
RxJava 提供了对事件序列进行变换的支持,这是它的核心功能之一,也是大多数人说『RxJava 真是太好用了』的最大原因。所谓变换,就是将事件序列中的对象或整个序列进行加工处理,转换成不同的事件或事件序列。
1、API
首先看一个 map() 的例子:
public interface Func1<T, R> extends Function {
R call(T t);//T是输入,R是输出
}
Observable.just("images/logo.png") // 输入类型 String
.map(new Func1<String, Bitmap>() {
@Override
public Bitmap call(String filePath) { // 参数类型 String
return getBitmapFromPath(filePath); // 返回类型 Bitmap
}
})
.subscribe(new Action1<Bitmap>() {
@Override
public void call(Bitmap bitmap) { // 参数类型 Bitmap
showBitmap(bitmap);
}
});
这里出现了一个叫做 Func1 的类。它和 Action1 非常相似,也是 RxJava 的一个接口,用于包装含有一个参数的方法。 Func1 和 Action 的区别在于, Func1 包装的是有返回值的方法。另外,和 ActionX 一样, FuncX 也有多个,用于不同参数个数的方法。FuncX 和 ActionX 的区别在 FuncX 包装的是有返回值的方法。
可以看到,map() 方法将参数中的 String 对象转换成一个 Bitmap 对象后返回,而在经过 map() 方法后,事件的参数类型也由 String 转为了 Bitmap。这种直接变换对象并返回的,是最常见的也最容易理解的变换。不过 RxJava 的变换远不止这样,它不仅可以针对事件对象,还可以针对整个事件队列,这使得 RxJava 变得非常灵活。我列举几个常用的变换:
-
map(Func1<? super T, ? extends R> func) Observable<R>
: 事件对象的直接变换,具体功能上面已经介绍过。它是 RxJava 最常用的变换。
map() 的示意图:
-
flatMap(Func1<? super T, ? extends Observable<? extends R>> func) Observable<R>
: 这是一个很有用但非常难理解的变换。
首先假设这么一种需求:假设有一个数据结构『学生』,现在需要打印出一组学生的名字。实现方式很简单:
Student[] students = ...;
Subscriber<String> subscriber = new Subscriber<String>() {
@Override
public void onNext(String name) {
Log.d(tag, name);
}
...
};
Observable.from(students)
.map(new Func1<Student, String>() {
@Override
public String call(Student student) {
return student.getName();
}
}).subscribe(subscriber);
很简单。那么再假设:如果要打印出每个学生所需要修的所有课程的名称呢?(需求的区别在于,每个学生只有一个名字,但却有多个课程。)首先可以这样实现:
Student[] students = ...;
Subscriber<Student> subscriber = new Subscriber<Student>() {
@Override
public void onNext(Student student) {
List<Course> courses = student.getCourses();
for (int i = 0; i < courses.size(); i++) {
Course course = courses.get(i);
Log.d(tag, course.getName());
}
}
...
};
Observable.from(students)
.subscribe(subscriber);
依然很简单。那么如果我不想在 Subscriber 中使用 for 循环,而是希望 Subscriber 中直接传入单个的 Course 对象呢(这对于代码复用很重要)?用 map() 显然是不行的,因为 map() 是一对一的转化,而我现在的要求是一对多的转化。那怎么才能把一个 Student 转化成多个 Course 呢?
这个时候,就需要用 flatMap() 了:
Student[] students = ...;
Subscriber<Course> subscriber = new Subscriber<Course>() {
@Override
public void onNext(Course course) {
Log.d(tag, course.getName());
}
...
};
Observable.from(students)
.flatMap(new Func1<Student, Observable<Course>>() {
@Override
public Observable<Course> call(Student student) {
return Observable.from(student.getCourses());
}
})
.subscribe(subscriber);
从上面的代码可以看出, flatMap()
和 map()
有一个相同点:它也是把传入的参数转化之后返回另一个对象。但需要注意,和 map() 不同的是, flatMap() 中返回的是个 Observable 对象,并且这个 Observable 对象并不是被直接发送到了 Subscriber 的回调方法中。 flatMap() 的原理是这样的:1. 使用传入的事件对象创建一个 Observable 对象;2. 并不发送这个 Observable, 而是将它激活,于是它开始发送事件;3. 每一个创建出来的 Observable 发送的事件,都被汇入同一个 Observable ,而这个 Observable 负责将这些事件统一交给 Subscriber 的回调方法。这三个步骤,把事件拆成了两级,通过一组新创建的 Observable 将初始的对象『铺平』之后通过统一路径分发了下去。而这个『铺平』就是 flatMap() 所谓的 flat。
flatMap() 示意图:
扩展:由于可以在嵌套的 Observable 中添加异步代码, flatMap() 也常用于嵌套的异步操作,例如嵌套的网络请求。示例代码(Retrofit + RxJava):
networkClient.token() // 返回 Observable<String>,在订阅时请求 token,并在响应后发送 token
.flatMap(new Func1<String, Observable<Messages>>() {
@Override
public Observable<Messages> call(String token) {
// 返回 Observable<Messages>,在订阅时请求消息列表,并在响应后发送请求到的消息列表
return networkClient.messages();
}
})
.subscribe(new Action1<Messages>() {
@Override
public void call(Messages messages) {
// 处理显示消息列表
showMessages(messages);
}
});
传统的嵌套请求需要使用嵌套的 Callback 来实现。而通过 flatMap() ,可以把嵌套的请求写在一条链中,从而保持程序逻辑的清晰。
-
throttleFirst(long windowDuration, TimeUnit unit)
: 在每次事件触发后的一定时间间隔内丢弃新的事件。常用作去抖动过滤,例如按钮的点击监听器: RxView.clickEvents(button) // RxBinding 代码,后面的文章有解释 .throttleFirst(500, TimeUnit.MILLISECONDS) // 设置防抖间隔为 500ms .subscribe(subscriber); 妈妈再也不怕我的用户手抖点开两个重复的界面啦。
此外, RxJava 还提供很多便捷的方法来实现事件序列的变换,这里就不一一举例了。
2、变换的原理:lift()
这些变换虽然功能各有不同,但实质上都是针对事件序列的处理和再发送。而在 RxJava 的内部,它们是基于同一个基础的变换方法: lift(final Operator<? extends R, ? super T> operator) Observable<R>
。首先看一下 lift() 的内部实现(仅核心代码):
public <R> Observable<R> lift(Operator<? extends R, ? super T> operator) {
return Observable.create(new OnSubscribe<R>() {
@Override
public void call(Subscriber subscriber) {
Subscriber newSubscriber = operator.call(subscriber);
newSubscriber.onStart();
onSubscribe.call(newSubscriber);
}
});
}
这段代码很有意思:它生成了一个新的 Observable 并返回,而且创建新 Observable 所用的参数 OnSubscribe 的回调方法 call() 中的实现竟然看起来和前面讲过的 Observable.subscribe() 一样!然而它们并不一样哟~不一样的地方关键就在于第二行 onSubscribe.call(subscriber) 中的 onSubscribe 所指代的对象不同(高能预警:接下来的几句话可能会导致身体的严重不适)——
- subscribe() 中这句话的 onSubscribe 指的是 Observable 中的 onSubscribe 对象,这个没有问题,但是 lift() 之后的情况就复杂了点。
- 当含有 lift() 时:
1)lift() 创建了一个 Observable 后,加上之前的原始 Observable,已经有两个 Observable 了;
2) 而同样地,新 Observable 里的新 OnSubscribe 加上之前的原始 Observable 中的原始 OnSubscribe,也就有了两个 OnSubscribe;
3) 当用户调用经过 lift() 后的 Observable 的 subscribe() 的时候,使用的是 lift() 所返回的新的 Observable ,于是它所触发的 onSubscribe.call(subscriber),也是用的新 Observable 中的新 OnSubscribe,即在 lift() 中生成的那个 OnSubscribe;
4)而这个新 OnSubscribe 的 call() 方法中的 onSubscribe ,就是指的原始 Observable 中的原始 OnSubscribe ,在这个 call() 方法里,新 OnSubscribe 利用 operator.call(subscriber) 生成了一个新的 Subscriber(Operator 就是在这里,通过自己的 call() 方法将新 Subscriber 和原始 Subscriber 进行关联,并插入自己的『变换』代码以实现变换),然后利用这个新 Subscriber 向原始 Observable 进行订阅。
这样就实现了 lift() 过程,有点像一种代理机制,通过事件拦截和处理实现事件序列的变换。
精简掉细节的话,也可以这么说:在 Observable 执行了 lift(Operator) 方法之后,会返回一个新的 Observable,这个新的 Observable 会像一个代理一样,负责接收原始的 Observable 发出的事件,并在处理后发送给 Subscriber。
如果你更喜欢具象思维,可以看图:
或者可以看动图:
两次和多次的 lift() 同理,如下图:
举一个具体的 Operator 的实现。下面这是一个将事件中的 Integer 对象转换成 String 的例子,仅供参考:
observable.lift(new Observable.Operator<String, Integer>() {
@Override
public Subscriber<? super Integer> call(final Subscriber<? super String> subscriber) {
// 将事件序列中的 Integer 对象转换为 String 对象
return new Subscriber<Integer>() {
@Override
public void onNext(Integer integer) {
subscriber.onNext("" + integer);
}
@Override
public void onCompleted() {
subscriber.onCompleted();
}
@Override
public void onError(Throwable e) {
subscriber.onError(e);
}
};
}
});
讲述 lift() 的原理只是为了让你更好地了解 RxJava ,从而可以更好地使用它。然而不管你是否理解了 lift() 的原理,RxJava 都不建议开发者自定义 Operator 来直接使用 lift(),而是建议尽量使用已有的 lift() 包装方法(如 map() flatMap() 等)进行组合来实现需求,因为直接使用 lift() 非常容易发生一些难以发现的错误。
3、compose: 对 Observable 整体的变换
除了 lift() 之外, Observable 还有一个变换方法叫做 compose(Transformer<? super T, ? extends R> transformer) Observable<R>
。它和 lift() 的区别在于, lift() 是针对事件项和事件序列的,而 compose() 是针对 Observable 自身进行变换。举个例子,假设在程序中有多个 Observable ,并且他们都需要应用一组相同的 lift() 变换。你可以这么写:
observable1
.lift1()
.lift2()
.lift3()
.lift4()
.subscribe(subscriber1);
observable2
.lift1()
.lift2()
.lift3()
.lift4()
.subscribe(subscriber2);
observable3
.lift1()
.lift2()
.lift3()
.lift4()
.subscribe(subscriber3);
observable4
.lift1()
.lift2()
.lift3()
.lift4()
.subscribe(subscriber1);
你觉得这样太不软件工程了,于是你改成了这样:
private Observable liftAll(Observable observable) {
return observable
.lift1()
.lift2()
.lift3()
.lift4();
}
...
liftAll(observable1).subscribe(subscriber1);
liftAll(observable2).subscribe(subscriber2);
liftAll(observable3).subscribe(subscriber3);
liftAll(observable4).subscribe(subscriber4);
可读性、可维护性都提高了。可是 Observable 被一个方法包起来,这种方式对于 Observale 的灵活性似乎还是增添了那么点限制。怎么办?这个时候,就应该用 compose() 来解决了:
public class LiftAllTransformer implements Observable.Transformer<Integer, String> {
@Override
public Observable<String> call(Observable<Integer> observable) {
return observable
.lift1()
.lift2()
.lift3()
.lift4();
}
}
...
Transformer liftAll = new LiftAllTransformer();
observable1.compose(liftAll).subscribe(subscriber1);
observable2.compose(liftAll).subscribe(subscriber2);
observable3.compose(liftAll).subscribe(subscriber3);
observable4.compose(liftAll).subscribe(subscriber4);
像上面这样,使用 compose() 方法,Observable 可以利用传入的 Transformer 对象的 call 方法直接对自身进行处理,也就不必被包在方法的里面了。
五、线程控制:Scheduler (二)
除了灵活的变换,RxJava 另一个牛逼的地方,就是线程的自由控制。
1、Scheduler 的 API (二)
前面讲到了,可以利用 subscribeOn() 结合 observeOn() 来实现线程控制,让事件的产生和消费发生在不同的线程。可是在了解了 map() flatMap() 等变换方法后,有些好事的(其实就是当初刚接触 RxJava 时的我)就问了:能不能多切换几次线程?
答案是:能。因为 observeOn() 指定的是 Subscriber 的线程,而这个 Subscriber 并不是(严格说应该为『不一定是』,但这里不妨理解为『不是』)subscribe() 参数中的 Subscriber ,而是 observeOn() 执行时的当前 Observable 所对应的 Subscriber ,即它的直接下级 Subscriber 。换句话说,observeOn() 指定的是它之后的操作所在的线程。因此如果有多次切换线程的需求,只要在每个想要切换线程的位置调用一次 observeOn() 即可。上代码:
Observable.just(1, 2, 3, 4) // IO 线程,由 subscribeOn() 指定
.subscribeOn(Schedulers.io())
.observeOn(Schedulers.newThread())
.map(mapOperator) // 新线程,由 observeOn() 指定
.observeOn(Schedulers.io())
.map(mapOperator2) // IO 线程,由 observeOn() 指定
.observeOn(AndroidSchedulers.mainThread)
.subscribe(subscriber); // Android 主线程,由 observeOn() 指定
如上,通过 observeOn() 的多次调用,程序实现了线程的多次切换。
不过,不同于 observeOn() , subscribeOn() 的位置放在哪里都可以,但它是只能调用一次的。
又有好事的(其实还是当初的我)问了:如果我非要调用多次 subscribeOn() 呢?会有什么效果?
这个问题先放着,我们还是从 RxJava 线程控制的原理说起吧。
2、Scheduler 的原理(二)
其实, subscribeOn() 和 observeOn() 的内部实现,也是用的 lift()。具体看图(不同颜色的箭头表示不同的线程):
subscribeOn() 原理图:
observeOn() 原理图:
从图中可以看出,subscribeOn() 和 observeOn() 都做了线程切换的工作(图中的 "schedule..." 部位)。不同的是, subscribeOn() 的线程切换发生在 OnSubscribe 中,即在它通知上一级 OnSubscribe 时,这时事件还没有开始发送,因此 subscribeOn() 的线程控制可以从事件发出的开端就造成影响;而 observeOn() 的线程切换则发生在它内建的 Subscriber 中,即发生在它即将给下一级 Subscriber 发送事件时,因此 observeOn() 控制的是它后面的线程。
最后,我用一张图来解释当多个 subscribeOn() 和 observeOn() 混合使用时,线程调度是怎么发生的(由于图中对象较多,相对于上面的图对结构做了一些简化调整):
图中共有 5 处含有对事件的操作。由图中可以看出,①和②两处受第一个 subscribeOn() 影响,运行在红色线程;③和④处受第一个 observeOn() 的影响,运行在绿色线程;⑤处受第二个 onserveOn() 影响,运行在紫色线程;而第二个 subscribeOn() ,由于在通知过程中线程就被第一个 subscribeOn() 截断,因此对整个流程并没有任何影响。这里也就回答了前面的问题:当使用了多个 subscribeOn() 的时候,只有第一个 subscribeOn() 起作用。
3、延伸:doOnSubscribe()
然而,虽然超过一个的 subscribeOn() 对事件处理的流程没有影响,但在流程之前却是可以利用的。
在前面讲 Subscriber 的时候,提到过 Subscriber 的 onStart() 可以用作流程开始前的初始化。然而 onStart() 由于在 subscribe() 发生时就被调用了,因此不能指定线程,而是只能执行在 subscribe() 被调用时的线程。这就导致如果 onStart() 中含有对线程有要求的代码(例如在界面上显示一个 ProgressBar,这必须在主线程执行),将会有线程非法的风险,因为有时你无法预测 subscribe() 将会在什么线程执行。
而与 Subscriber.onStart() 相对应的,有一个方法 Observable.doOnSubscribe() 。它和 Subscriber.onStart() 同样是在 subscribe() 调用后而且在事件发送前执行,但区别在于它可以指定线程。默认情况下, doOnSubscribe() 执行在 subscribe() 发生的线程;而如果在 doOnSubscribe() 之后有 subscribeOn() 的话,它将执行在离它最近的 subscribeOn() 所指定的线程。
示例代码:
Observable.create(onSubscribe)
.subscribeOn(Schedulers.io())
.doOnSubscribe(new Action0() {
@Override
public void call() {
progressBar.setVisibility(View.VISIBLE); // 需要在主线程执行
}
})
.subscribeOn(AndroidSchedulers.mainThread()) // 指定主线程
.observeOn(AndroidSchedulers.mainThread())
.subscribe(subscriber);
如上,在 doOnSubscribe()的后面跟一个 subscribeOn() ,就能指定准备工作的线程了。
网友评论