美文网首页信息学竞赛题解(IO题解)数据结构和算法分析
BZOJ-3231: [Sdoi2008]递归数列(矩阵快速幂)

BZOJ-3231: [Sdoi2008]递归数列(矩阵快速幂)

作者: AmadeusChan | 来源:发表于2018-10-17 12:27 被阅读1次

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3231

    矩阵快速幂搞一搞。。。记得把Sn也维护进矩阵里。

    代码:

    #include <cstdio>
    #include <algorithm>
    #include <cstring>
     
    using namespace std ;
     
    #define ll long long
    #define MAXN 20
    #define rep( i , x ) for ( ll i = 0 ; i < x ; ++ i )
     
    ll mod ;
     
    struct mat {
         
        ll n , m , a[ MAXN ][ MAXN ] ;
         
        mat(  ) {
            n = m = 0 ;
            memset( a , 0 , sizeof( a ) ) ;
        }
         
        void I( int _n ) {
            n = m = _n ;
            rep( i , n ) a[ i ][ i ] = 1 ;
        }
         
    };
     
    mat operator * ( const mat &x , const mat &y ) {
        mat ret ;
        ret.n = x.n , ret.m = y.m ;
        rep( i , ret.n ) rep( j , ret.m ) rep( k , x.m ) {
            ( ret.a[ i ][ j ] += x.a[ i ][ k ] * y.a[ k ][ j ] ) %= mod ;
        }
        return ret ;
    }
     
    mat power( mat x , ll cnt ) {
        mat ret ; ret.I( x.n ) ;
        for ( ; cnt ; cnt >>= 1 ) {
            if ( cnt & 1 ) ret = ret * x ;
            x = x * x ;
        }
        return ret ;
    }
     
    ll n , m , k , b[ MAXN ] , c[ MAXN ] , sum[ MAXN ] ;
    mat ori , e ;
     
    ll SUM( ll cnt ) {
        if ( cnt <= k ) return sum[ cnt ] ;
        mat ret = power( e , cnt - k ) * ori ;
        ll rec = ( ret.a[ 0 ][ 0 ] + ret.a[ 1 ][ 0 ] ) % mod ;
        return rec ;
    }
     
    int main(  ) {
        memset( sum , 0 , sizeof( sum ) ) ;
        scanf( "%lld" , &k ) ;
        for ( int i = 0 ; i ++ < k ; ) scanf( "%lld" , b + i ) ;
        for ( int i = 0 ; i ++ < k ; ) scanf( "%lld" , c + i ) ;
        scanf( "%lld%lld%lld" , &m , &n , &mod ) ;
        e.n = e.m = k + 1 ;
        e.a[ 0 ][ 0 ] = e.a[ 0 ][ 1 ] = 1 ;
        for ( int i = 0 ; i ++ < k ; ) e.a[ 1 ][ i ] = c[ i ] % mod ;
        for ( int i = 1 ; i ++ < k ; ) e.a[ i ][ i - 1 ] = 1 ;
        for ( int i = 0 ; i ++ < k ; ) ( sum[ i ] = sum[ i - 1 ] + b[ i ] ) % mod ;
        ori.n = k + 1 , ori.m = 1 ;
        ori.a[ 0 ][ 0 ] = sum[ k - 1 ] ;
        for ( int i = 0 ; i ++ < k ; ) ori.a[ i ][ 0 ] = b[ k - i + 1 ] ;
        ll x = SUM( n ) , y = SUM( m - 1 ) ;
        ll ans = x - y ;
        while ( ans < 0 ) ans += mod ;
        printf( "%lld\n" , ans ) ;
        return 0 ; 
    }
    

    相关文章

      网友评论

        本文标题:BZOJ-3231: [Sdoi2008]递归数列(矩阵快速幂)

        本文链接:https://www.haomeiwen.com/subject/pqnlzftx.html