美文网首页
TCGA的微卫星不稳定性数据获取和可视化

TCGA的微卫星不稳定性数据获取和可视化

作者: 小洁忘了怎么分身 | 来源:发表于2022-07-16 23:12 被阅读0次

    1.背景知识

    在一篇文章里看到了微卫星不稳定性(Microsatellite Instability,MSI)与riskscore的关系图,就去查了一下,很好的背景知识资料:

    https://mp.weixin.qq.com/s/zx5eaNvBrwWxKWgIl7CC4w

    核心知识:

    1.计算MSI分数的工具:MANTIS,默认阈值0.4,高于阈值为MSI-H,低于阈值为MSS(无明显的MSI出现)。
    2.最早再结直肠癌种发现,是预后良好的标志,MSI结直肠癌5年生存率要显著高于MSS结直肠癌,MSI-H结直肠癌比MSS结直肠癌有更好的预后。

    2.寻找TCGA的MSI数据

    那么TCGA微卫星不稳定的数据上哪找呢?隐约记得在cbioportal有。但是他们现在把下载接口删掉了,不好找。

    继续搜索,搜到了这个包:cBioPortalData,可以下载数据。

    一个不错的教程:

    https://zhuanlan.zhihu.com/p/406088178

    我的需求,主要是下载cBioPortal的临床信息,有很多是其他渠道找不到的。

    使用起来非常简单:

    library(cBioPortalData)
    cbio <- cBioPortal()
    studies = getStudies(cbio)
    head(studies$studyId)
    ## [1] "acc_tcga"                     "blca_plasmacytoid_mskcc_2016"
    ## [3] "bcc_unige_2016"               "all_stjude_2015"             
    ## [5] "ampca_bcm_2016"               "blca_dfarber_mskcc_2014"
    id = "ucec_tcga_pan_can_atlas_2018"
    clinical = clinicalData(cbio, id)
    colnames(clinical)
    ##  [1] "patientId"                                
    ##  [2] "AGE"                                      
    ##  [3] "AJCC_STAGING_EDITION"                     
    ##  [4] "BUFFA_HYPOXIA_SCORE"                      
    ##  [5] "CANCER_TYPE_ACRONYM"                      
    ##  [6] "DAYS_LAST_FOLLOWUP"                       
    ##  [7] "DAYS_TO_INITIAL_PATHOLOGIC_DIAGNOSIS"     
    ##  [8] "DSS_MONTHS"                               
    ##  [9] "DSS_STATUS"                               
    ## [10] "ETHNICITY"                                
    ## [11] "FORM_COMPLETION_DATE"                     
    ## [12] "HISTORY_NEOADJUVANT_TRTYN"                
    ## [13] "ICD_10"                                   
    ## [14] "ICD_O_3_HISTOLOGY"                        
    ## [15] "ICD_O_3_SITE"                             
    ## [16] "INFORMED_CONSENT_VERIFIED"                
    ## [17] "IN_PANCANPATHWAYS_FREEZE"                 
    ## [18] "NEW_TUMOR_EVENT_AFTER_INITIAL_TREATMENT"  
    ## [19] "OS_MONTHS"                                
    ## [20] "OS_STATUS"                                
    ## [21] "OTHER_PATIENT_ID"                         
    ## [22] "PERSON_NEOPLASM_CANCER_STATUS"            
    ## [23] "PFS_MONTHS"                               
    ## [24] "PFS_STATUS"                               
    ## [25] "PRIOR_DX"                                 
    ## [26] "RACE"                                     
    ## [27] "RADIATION_THERAPY"                        
    ## [28] "RAGNUM_HYPOXIA_SCORE"                     
    ## [29] "SAMPLE_COUNT"                             
    ## [30] "SEX"                                      
    ## [31] "SUBTYPE"                                  
    ## [32] "WEIGHT"                                   
    ## [33] "WINTER_HYPOXIA_SCORE"                     
    ## [34] "DAYS_TO_BIRTH"                            
    ## [35] "DFS_MONTHS"                               
    ## [36] "DFS_STATUS"                               
    ## [37] "sampleId"                                 
    ## [38] "ANEUPLOIDY_SCORE"                         
    ## [39] "CANCER_TYPE"                              
    ## [40] "CANCER_TYPE_DETAILED"                     
    ## [41] "FRACTION_GENOME_ALTERED"                  
    ## [42] "GRADE"                                    
    ## [43] "MSI_SCORE_MANTIS"                         
    ## [44] "MSI_SENSOR_SCORE"                         
    ## [45] "MUTATION_COUNT"                           
    ## [46] "ONCOTREE_CODE"                            
    ## [47] "SAMPLE_TYPE"                              
    ## [48] "SOMATIC_STATUS"                           
    ## [49] "TISSUE_PROSPECTIVE_COLLECTION_INDICATOR"  
    ## [50] "TISSUE_RETROSPECTIVE_COLLECTION_INDICATOR"
    ## [51] "TISSUE_SOURCE_SITE"                       
    ## [52] "TISSUE_SOURCE_SITE_CODE"                  
    ## [53] "TMB_NONSYNONYMOUS"                        
    ## [54] "TUMOR_TISSUE_SITE"                        
    ## [55] "TUMOR_TYPE"
    

    这是临床信息的数据列名,里面就包括了MSI_SCORE_MANTIS这一列。

    3.画个图玩

    R语言的好处就是拿到了数据可以进行自定义的可视化,比网页工具更加灵活,也更好重复。

    df = na.omit(clinical[,c("patientId","MSI_SCORE_MANTIS")])
    colnames(df)[2] = "MSI_score"
    df$MSI_score = as.numeric(df$MSI_score)
    k= df$MSI_score >0.4;table(k)
    ## k
    ## FALSE  TRUE 
    ##   358   168
    df$Group =  ifelse(k,"MSI","MSS")
    head(df)
    ## # A tibble: 6 x 3
    ##   patientId    MSI_score Group
    ##   <chr>            <dbl> <chr>
    ## 1 TCGA-2E-A9G8     0.323 MSS  
    ## 2 TCGA-4E-A92E     0.340 MSS  
    ## 3 TCGA-5B-A90C     0.334 MSS  
    ## 4 TCGA-5S-A9Q8     0.320 MSS  
    ## 5 TCGA-A5-A0G1     0.311 MSS  
    ## 6 TCGA-A5-A0G2     0.400 MSI
    

    整理好了数据,就可以画图啦

    library(ggplot2)
    ggplot(df,aes(x = Group,y = MSI_score,fill = Group))+
      geom_boxplot()+
      geom_jitter(size = 0.5)+
      geom_hline(yintercept = 0.4,lty = 4)+
      theme_bw()
    

    相关文章

      网友评论

          本文标题:TCGA的微卫星不稳定性数据获取和可视化

          本文链接:https://www.haomeiwen.com/subject/psoiertx.html