美文网首页深度学习研究所
训练卷积神经网络识别mnist数字

训练卷积神经网络识别mnist数字

作者: 西方失败9527 | 来源:发表于2017-09-26 11:17 被阅读0次

    总的来说,思路较为清晰,关键搞清卷积过程以及过程中张量维度的变化,还需注意求正确率的方法——利用平均值求解

    from  tensorflow.examples.tutorials.mnist  import  input_data

    import tensorflow as tf

    #随机化权值变量tensor,高斯分布

    def  weight_variable(shape):

                 initial=tf.truncated_normal(shape,stddev=0.1)

                 return  tf.Variable(initial)

    #随机化偏置,高斯分布

    def  bias_variable(shape):

               initial=tf.constant(0.1,shape=shape)

               return  tf.Variable(initial)

    #定义二维图像卷积

    def  conv2d(x,W):

            return    tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

    def   max_pool_2x2(x):

             return  tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

    ###start here!###

    sess=tf.InteractiveSession()

    mnist=input_data.read_data_sets('MNIST_data',one_hot=True)

    #接收mnist中真实数据

    x=tf.placeholder("float",shape=[None,784])

    y_=tf.placeholder("float",shape=[None,10])

    #layer 1: convolution + relu + max pooling

    W_conv1=weight_variable([5,5,1,32])

    b_conv1=bias_variable([32])

    x_image=tf.reshape(x,[-1,28,28,1])#[batch, height, width, channels]

    h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)

    h_pool1=max_pool_2x2(h_conv1)

    #layer 2: convolution + relu + max pooling

    W_conv2=weight_variable([5,5,32,64])

    b_conv2=bias_variable([64])

    h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)

    h_pool2=max_pool_2x2(h_conv2)

    W_fc1=weight_variable([7*7*64,1024])

    b_fc1=bias_variable([1024])

    #第三层 全连接层

    h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])

    h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

    #dropout层

    keep_prob=tf.placeholder("float")

    h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

    #全连接层

    W_fc2=weight_variable([1024,10])

    b_fc2=bias_variable([10])

    #softmax 判定层

    y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)

    cross_entropy= -tf.reduce_sum(y_*tf.log(y_conv))#交叉熵cost计算方法

    train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)#ada优化

    correct_prediction=tf.equal(tf.arg_max(y_conv,1),tf.arg_max(y_,1))

    accuracy=tf.reduce_mean(tf.cast(correct_prediction,"float"))

    sess.run(tf.global_variables_initializer())

    for  i  inrange(20000):

            batch=mnist.train.next_batch(50)

             if i%100==0:

                    train_accuracy=accuracy.eval(feed_dict={ x:batch[0],y_:batch[1],keep_prob:1.0})

                    print("step %d, training accuracy %g"%(i,train_accuracy))

               train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})

    print("test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0}))

    相关文章

      网友评论

        本文标题:训练卷积神经网络识别mnist数字

        本文链接:https://www.haomeiwen.com/subject/pthsextx.html