美文网首页java高级开发群Spring-Boot
算法爱好者福利—拓扑排序的简介及实现

算法爱好者福利—拓扑排序的简介及实现

作者: 码农奋斗之路 | 来源:发表于2020-12-18 20:39 被阅读0次

前言

拓扑排序的英文名是 Topological sorting,它要解决的问题是给一个图的所有节点排序。今天让我们一起来详细学习下它吧。

一、什么是拓扑排序

在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。

且该序列必须满足下面两个条件:

  • 每个顶点出现且只出现一次。
  • 若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。

有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。

例如,下面这个图:

image

它是一个 DAG 图,那么如何写出它的拓扑排序呢?这里说一种比较常用的方法:

  1. 从 DAG 图中选择一个 没有前驱(即入度为0)的顶点并输出。
  2. 从图中删除该顶点和所有以它为起点的有向边。
  3. 重复 1 和 2 直到当前的 DAG 图为空或当前图中不存在无前驱的顶点为止。后一种情况说明有向图中必然存在环。
image

于是,得到拓扑排序后的结果是 { 1, 2, 4, 3, 5 }。

通常,一个有向无环图可以有一个或多个拓扑排序序列。

二、拓扑排序的应用

拓扑排序通常用来“排序”具有依赖关系的任务。

比如,如果用一个DAG图来表示一个工程,其中每个顶点表示工程中的一个任务,用有向边表示在做任务 B 之前必须先完成任务 A。

故在这个工程中,任意两个任务要么具有确定的先后关系,要么是没有关系,绝对不存在互相矛盾的关系(即环路)。

三、拓扑排序的实现

根据上面讲的方法,我们关键是要维护一个入度为0的顶点的集合。

图的存储方式有两种:邻接矩阵和邻接表。这里我们采用邻接表来存储图,C++代码如下:

#include<iostream>#include <list>
#include <queue>
using namespace std;

/************************类声明************************/
class Graph
{
    int V;             // 顶点个数
    list<int> *adj;    // 邻接表
    queue<int> q;      // 维护一个入度为0的顶点的集合
    int* indegree;     // 记录每个顶点的入度
public:
    Graph(int V);                   // 构造函数
    ~Graph();                       // 析构函数
    void addEdge(int v, int w);     // 添加边
    bool topological_sort();        // 拓扑排序
};

/************************类定义************************/
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];

    indegree = new int[V];  // 入度全部初始化为0
    for(int i=0; i<V; ++i)
        indegree[i] = 0;
}

Graph::~Graph()
{
    delete [] adj;
    delete [] indegree;
}

void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); 
    ++indegree[w];
}

bool Graph::topological_sort()
{
    for(int i=0; i<V; ++i)
        if(indegree[i] == 0)
            q.push(i);         // 将所有入度为0的顶点入队

    int count = 0;             // 计数,记录当前已经输出的顶点数 
    while(!q.empty())
    {
        int v = q.front();      // 从队列中取出一个顶点
        q.pop();

        cout << v << " ";      // 输出该顶点
        ++count;
        // 将所有v指向的顶点的入度减1,并将入度减为0的顶点入栈
        list<int>::iterator beg = adj[v].begin();
        for( ; beg!=adj[v].end(); ++beg)
            if(!(--indegree[*beg]))
                q.push(*beg);   // 若入度为0,则入栈
    }

    if(count < V)
        return false;           // 没有输出全部顶点,有向图中有回路
    else
        return true;            // 拓扑排序成功
}

测试如下DAG图:

image
int main(){    
    Graph g(6);   // 创建图
    g.addEdge(5, 2);
    g.addEdge(5, 0);
    g.addEdge(4, 0);
    g.addEdge(4, 1);
    g.addEdge(2, 3);
    g.addEdge(3, 1);

    g.topological_sort();
    return 0;
}

输出结果是 4, 5, 2, 0, 3, 1。这是该图的拓扑排序序列之一。

每次在入度为0的集合中取顶点,并没有特殊的取出规则,随机取出也行,这里使用的queue。

取顶点的顺序不同会得到不同的拓扑排序序列,当然前提是该图存在多个拓扑排序序列。​​​​​​

由于输出每个顶点的同时还要删除以它为起点的边,故上述拓扑排序的时间复杂度为O(V+E)。
最后小编还给大家整理了了leetcode算法刷题笔记和面试宝典,有想要领取的大哥们只需要私信之后即可获取!!

Leetcode算法笔记目录

image

相关文章

  • 算法爱好者福利—拓扑排序的简介及实现

    前言 拓扑排序的英文名是 Topological sorting,它要解决的问题是给一个图的所有节点排序。今天让我...

  • 7.6图的应用:拓扑排序

    拓扑排序Topological Sort ❖从工作流程图得到工作次序排列的算法,称为“拓扑排序”❖拓扑排序处理一个...

  • LeetCode 第207题:课程表

    1、前言 2、思路 使用拓扑排序的方法,拓扑排序其实是使用的 BFS 算法,简而言之使用 BFS 算法解题。算法流...

  • 模板

    并查集 拓扑排序 Floyd算法 Dijkstra算法

  • 《python算法教程》Day4 - 拓扑排序(基于有向无环图)

    这是《python算法教程》的第4篇读书笔记。这篇笔记的主要内容为拓扑排序。 拓扑排序简介 在将一件事情分解为若干...

  • 利用DFS实现拓扑排序

    拓扑排序定义利用“DAG必有零入度顶点”的特性,实现拓扑排序基于DFS搜索的拓扑排序 1. 拓扑排序定义 将一个有...

  • 数据结构与算法第七讲 - 排序(上)

    对于排序算法,主要掌握内容如下: 排序算法的实现原理 手写出实现代码 评价及分析算法 本讲内容 如何分析一个排序算...

  • 排序

    八大排序算法 一、归并排序 递归及非递归的JAVA实现 二、快速排序 快排算法JAVA实现 三、堆排序 堆排序堆排...

  • python实现计数排序(CountSort)

    python实现【计数排序】(CountSort) 算法原理及介绍 计数排序不是基于比较的排序算法,其核心在于将输...

  • 18-拓扑排序

    拓扑排序## 拓扑排序是针对有向无环图定义的,此算法可以判断一个有向图是否存在回路。拓扑排序反应的是活动和工程的先...

网友评论

    本文标题:算法爱好者福利—拓扑排序的简介及实现

    本文链接:https://www.haomeiwen.com/subject/ptmfnktx.html