美文网首页
正负压脱硫的一些差异

正负压脱硫的一些差异

作者: 辰龙_c514 | 来源:发表于2019-07-07 07:55 被阅读0次

正、负压脱硫工艺对比

国内外对焦炉煤气的脱硫工艺分为正压脱硫和负压脱硫二种。

1正压脱硫工艺

从鼓风机来的约55~60℃的煤气,先进入预冷塔,用循环水冷却至30℃左右,然后进入脱硫塔。

预冷塔用冷却水自成循环系统,从塔底排出的热水经循环泵送往冷却器,用循环冷却水换热后进入预冷塔顶部喷洒用于冷却煤气,预冷循环水定期进行排污,送往机械化澄清槽,同时往循环系统中加入剩余氨水予以补充。

从预冷塔来的煤气进入脱硫塔底部与塔顶喷淋的脱硫液逆向接触,脱除H2S、HCN后由塔顶溢出去往硫铵单元。

从脱硫塔底排出的脱硫液经液封槽进入反应槽,再由脱硫液循环泵送出,一部分经过冷却器冷却后与另一部分未冷却液体混合后经预混喷嘴送入再生塔底部,同时在再生塔底部鼓入压缩空气,使脱硫液在塔内得以再生,再生后的脱硫液于塔上部经液位调节器流至脱硫塔循环喷洒使用,上浮于再生塔顶部扩大部分的硫泡沫利用液位差自流入硫泡沫槽,产生的硫泡沫用泵送至离心机离心分离,滤液返回反应槽,硫膏装袋后外销。

脱硫所用成品氨水由蒸氨每班送至脱硫反应槽加入脱硫液循环系统。

2负压脱硫工艺

电捕来的约25℃煤气进入填料脱硫塔底部,与塔顶喷洒下来的再生溶液逆向接触,吸收煤气中的H2S和HCN(同时吸收煤气中的NH3,以补充脱硫液中的碱源)。脱硫后煤气进入鼓风机单元。

脱硫塔底吸收了H2S、HCN的循环液,经脱硫液泵进入再生塔底预混喷嘴(脱硫液温度高时,部分进入板框式换热器进行冷却),与压缩空气剧烈混合,形成微小气泡后进入再生塔底部,沿再生塔上升过程中,在催化剂作用下氧化再生。再生后的脱硫液于再生塔上部经液位调节器进入U型管后,进入脱硫塔顶分布器,循环喷淋煤气。

上浮于再生塔顶部扩大部分的硫磺泡沫利用液位差自流入硫泡沫槽,产生的硫泡沫用泵送至板框式压滤机,滤液进入放空槽后,由放空槽自吸泵送至脱硫塔底继续循环使用,硫膏装袋后外销。

脱硫所用成品氨水由蒸氨每班送至脱硫塔底,加入脱硫液循环系统。

3正、负压脱硫运行指标对比

在同等煤气发生量情况下,采用红外气体分析仪(防爆型)Gasboard-3500对正负压脱硫工艺的脱硫效果进行对比监测,再综合脱硫工艺各方面运行参数,可得出正压脱硫与负压脱硫运行指标如下。

由上表可知,负压脱硫较正压脱硫,脱硫塔入口煤气温度降低了6℃,脱硫液温度降低了5.5℃,脱硫液温度的降低,有利于挥发氨(游离氨)浓度的提高,挥发氨浓度提高了5.2g/L;副盐浓度由300g/L以上降低至250g/L以下,降低了52.8g/L,副盐浓度的降低有利于脱硫效率的提高,脱硫效率由86.3%提高至99.0%,提高了12.7%。

正、负脱硫工艺特点对比

1温度变化

正压脱硫位于鼓风机后,进入脱硫工段的煤气温度约55~60℃,而脱硫反应适宜温度为25~35℃左右,脱硫工段后为硫铵工段,而硫铵工段适宜吸收反应温度为50~55℃,因此煤气经正压脱硫进入硫铵工段需对煤气现冷却再加热,存在较大的能源浪费。

负压脱硫位于电捕后,鼓风机前,进入脱硫工段的煤气约25℃,满足脱硫吸收、再生要求,而经过风机后的煤气直接进入硫铵工段,避免了对煤气冷却和预热,温度变化梯度更加合理,节约了冷能和热能,降低了系统能耗。

2游离氨浓度

HPF法脱硫是以氨为碱源的湿法氧化脱硫,吸收过程为化学反应,即通过吸收煤气中的氨(或外加氨水),增加氨的浓度提高对硫化氢、氰化氢等物质吸收效率,脱硫液中游离氨的浓度越高越有利于脱硫反应。

正压脱硫经过预冷后煤气温度一般在30℃左右,负压脱硫煤气温度为25℃左右,其脱硫液温度较正压降低5℃左右,脱硫液温度低有利于氨的吸收、溶解,同时避免了正压条件下预冷喷洒液的直接接触吸收煤气中的氨。因此,负压脱硫工艺有效提高了游离氨(挥发氨)浓度,游离氨浓度由正压脱硫的4~6g/L提高至负压脱硫的10~12g/L,达到较高的吸收效率,进而提高了脱硫效率。

3设备投资

负压脱硫与正压脱硫设备上相比,脱硫工段不再用预冷塔及其配套的循环喷洒泵、换热器等设备,硫铵工段不再用预热器,节约大量设备投资,占地面积减少近80m2。

负压脱硫根据工艺特点,不用反应槽,节省两个约150m3的反应槽,占地面积减少约120m2。

4环保效益

负压脱硫再生尾气回收至煤气系统内,减轻对大气污染的同时,尾气中的氧气、氨气等有效组分进入脱硫吸收塔内,参与脱硫吸收、解离反应,进一步增强了脱硫效率。

负压脱硫经济经济效益

负压脱硫较正压脱硫减少预冷塔、预冷喷洒泵、预冷换热器、反应槽等设备;减少煤气冷却消耗循环冷却水量150m3/h;节省硫铵预热器蒸汽量1t/h(冬季)。因此负压脱硫较正压脱硫节省成本为:

1)降低循环消耗成本:节约循环水量为150m3/h,按0.5元/m3、年运行360天计,则年节约循环冷却水成本为150×24×360×0.5=64.8万元。

2)降低蒸汽消耗:节约蒸汽量为1t/h,蒸汽按150元/t、冬季按120天计,则年节约蒸汽消耗成本为1×24×120×150=43.2万元。

3)降低设备投资成本:减少预冷塔、循环泵、换热器、反应槽等设备及工程投资费用约500万元。按设备折旧费用计,年降低投资费用50万元。

则年降低成本为:64.8+43.2+50=158万元。另外,脱硫效率的提高,降低了脱硫后煤气中硫化氢含量,进一步降低燃烧时二氧化硫排放量,环保效益显著。

结论

1)负压脱硫较正压脱硫减少预冷系统、反应槽等设备,投资费用低,占地面积小,操作简便。

2)负压脱硫较正压脱硫较好地利用了煤气温度变化梯度,避免煤气经过冷却再加热,降低了循环冷却水及蒸汽消耗成本,经济效益显著。

3)负压脱硫入口煤气温度、脱硫液温度较正压脱硫降低约5℃,挥发氨浓度提高至10g/L以上,提高了对硫化氢的吸收,进而提高了脱硫效率。

4)负压脱硫再生尾气全部并入煤气负压系统,实现了脱硫尾气“零”排放,改善了工作环境,降低了大气污染。

5)负压脱硫较正压脱硫效率显著提高,降低了煤气中硫化氢含量,进而减少燃烧时二氧化硫的排放量,具有显著的环保效益。

相关文章

  • 正负压脱硫的一些差异

    一 正、负压脱硫工艺对比 国内外对焦炉煤气的脱硫工艺分为正压脱硫和负压脱硫二种。 1正压脱硫工艺 从鼓风机来的约5...

  • 负压脱硫

    脱硫效率所采取的有效措施。 关键词:负压脱硫 脱硫效率 改进 我厂6#、7#焦炉于2005年建成投产,配套处理量为...

  • 脱硫工艺系统堵塔的危害及应对措施

    脱硫系统堵塔的危害及应对措施一、脱硫系统堵塔的危害: 1、电耗高 堵塔的直接后果就是整个脱硫系统的压差升高,...

  • 脱硫塔堵塔的若干问题

    一、脱硫系统堵塔的危害: 1、电耗高 堵塔的直接后果就是整个脱硫系统的压差升高,使电流增高,电机负荷加重,加...

  • 负压吸塑机与正负压吸塑机的区别

    1、概念不同 正负压吸塑机,通俗来讲,除了有负压,相对的它还有一个正压。机器在运作时,下面抽上面压,不单是下面负压...

  • Excel图表制作分享:正负数值对比柱形图

    如何在一张柱形图中表达正负数据之间的对比差异?

  • 石膏法脱硫技术的工艺系统

    (1)脱硫工艺采用成熟的简易石灰-石膏法脱硫技术,本脱硫工艺设计脱硫效率≥80%,除尘效率≥80%,保证SO2排放...

  • 浅谈脱硫工艺技术的几点看法

    关于脱硫工艺技术管理几点看法 脱硫的工艺看似简单,实际内部的联系非常复杂,影响脱硫状况的因素也比较多,因此作为脱硫...

  • 填料塔堵的问题

    脱硫塔塔堵的处理措施 2018-05-11 脱硫塔堵塔,形成脱硫塔阻力上升,严重时发生气体带液,影响生产,是脱硫...

  • 石膏法脱硫详解

    石膏法脱硫是湿法脱硫最常用的一种。石膏法的主要优点是:适用的煤种范围广、脱硫效率高(有的装置Ca/S=1时,脱硫效...

网友评论

      本文标题:正负压脱硫的一些差异

      本文链接:https://www.haomeiwen.com/subject/pwgvhctx.html