import numpy as np
class Perceptron(object):
weight = None
biases = None
def __init__(self, input_num, labels):
self.rate = 0.1
self.iter = 10
def activate(self, x):
return max(x, 0)
def fit(self, input_num, labels):
self.weight = np.random.rand(len(input_num))
self.biases = 0
for _ in range(self.iter):
for data, label in zip(input_num, labels):
y_predict = self.activate(sum(self.predict(data)))
loss = label - y_predic
self.weight += self.rate * loss * np.array(data)
self.biases += self.rate * loss
print("权重是:{} 偏移是:{}".formate(self.weight, self.biases))
def predict(self, x):
return self.weight * x + self.biases
网友评论