美文网首页
感知器Python实现

感知器Python实现

作者: Challis | 来源:发表于2019-06-28 10:30 被阅读0次
    import numpy as np
    class Perceptron(object):
      weight = None
      biases = None
    
      def __init__(self, input_num, labels):
        self.rate = 0.1
        self.iter = 10
    
      def activate(self, x):
        return max(x, 0)
    
      def fit(self, input_num, labels):
        self.weight = np.random.rand(len(input_num))
        self.biases = 0
        for _ in range(self.iter):
          for data, label in zip(input_num, labels):
            y_predict = self.activate(sum(self.predict(data)))
            loss = label - y_predic
            self.weight += self.rate * loss * np.array(data)
            self.biases += self.rate * loss
            print("权重是:{}   偏移是:{}".formate(self.weight, self.biases))
    
      def predict(self, x):
        return self.weight * x + self.biases
    
    

    相关文章

      网友评论

          本文标题:感知器Python实现

          本文链接:https://www.haomeiwen.com/subject/pwtscctx.html