出品:1Z实验室 (1ZLAB: Make Things Easy)
概要
下面的这张图片是十字激光的图像, 当前我们的任务就是要识别十字的四个端点还有十字中心。
这个缺口就是螺丝的孔位,所以你获得的图像可能是片段的,不一定连续。
binary.png我们用不同的颜色标示不同的端点, 空心圆代表交点。
cross-laser-demo.png算法流程讲解
1-图像二值化
binary.png二值化排除其他干扰。
binary = cv2.inRange(gray, 200, 255)
2-拟合线段与直线
用HoughLineP
进行线段拟合。
line_segs = cv2.HoughLinesP(binary, rho=2,theta=0.1, threshold=100)
len(line_segs)
HoughLineP
返回的是数组,每个元素是Tuple
类型的数据。还是要打印一下这个数据结构。
import math
for lseg in line_segs:
#
x1,y1,x2,y2 = lseg[0]
# 计算权重
weight = math.sqrt(math.pow(x1-x2, 2) + math.pow(y1-y2, 2))
print('x1: {}, y1: {}, x2: {}, y2: {}, weight: {}'.format(x1, y1, x2, y2, weight))
打印结果
线段的标示方法是记录线段的两个端点, 从(x1, y1)
点到(x2, y2)
点。
数组的个数,取决于你的调参,从十几个到几百个不等。
x1: 817, y1: 408, x2: 1068, y2: 164, weight: 350.0528531522061
x1: 525, y1: 93, x2: 868, y2: 468, weight: 508.20665088131227
x1: 630, y1: 202, x2: 818, y2: 408, weight: 278.89065957826557
x1: 488, y1: 56, x2: 814, y2: 412, weight: 482.7131653477042
x1: 816, y1: 407, x2: 960, y2: 267, weight: 200.83824337013107
x1: 714, y1: 520, x2: 714, y2: 520, weight: 0.0
x1: 845, y1: 391, x2: 1113, y2: 131, weight: 373.39523296367884
x1: 698, y1: 275, x2: 817, y2: 404, weight: 175.50498568416796
....
把线段的长度 作为这个线段的权重 Weight。
weight = math.sqrt(math.pow(x1-x2, 2) + math.pow(y1-y2, 2))
每个线段都可以求解出这个线段所在直线的k
还有b
.
y = k*x + b
求解k
,b
的算法比较简单,需要借助初中所学的知识。
def calculate_line(x1, y1, x2, y2):
'''
计算直线
如果直线水平或者垂直,统一向一个方向倾斜特定角度。
TODO 这里面没有考虑水平或者垂直的情况
'''
if x1 > x2:
x1,y1,x2,y2 = x2,y2,x1,y1
if x1 == x2 or y1 == y2:
# 有时候会出现单个像素点 x1 = x2 而且 y1 = y2
print('x1:{} y1:{} x2:{} y2:{}'.format(x1, y1, x2, y2))
k = (y1 - y2) / (x1 - x2)
b = (y2 * x1 - y1*x2) / (x1 - x2)
return k,b
3-合并线段
我们需要把这几百个线段拟合成两条直线, 这个2 属于我们的先验知识。
遍历所有的线段,求解其k
, b
还有对应的weight
。
然后我们通过字典数据结构来存放合并过后的直线。 数据结构细节如下:
参数 | 备注 |
---|---|
cur_k | 当前合并的直线的K值 |
cur_b | 当期合并的直线的b值 |
k_sum | K值的带权累加和 |
b_sum | b值的带权累加和 |
weight_sum | 权重和 |
x1 | 合并后大线段的左侧端点的x坐标 |
y1 | 合并后大线段的左侧端点的y坐标 |
x2 | 合并后大线段的右侧端点的x坐标 |
y2 | 合并后大线段的右侧端点的y坐标 |
所有合并后的直线/线段,存放在lines
里面, 每个线段在合并的时候,遍历lines里面合并后的线段,通过k
的差值(max_k_distance
)判断是否属于同一个直线,如果里面都没有的话就另外添加一个。
lines = []
# 最小权值
min_weight = 20
# 相同k之间最大的差距
max_k_distance = 0.3
for lseg in line_segs:
# 获取线段端点值
x1,y1,x2,y2 = lseg[0]
if x1 > x2:
x1, y1, x2, y2 = x2, y2, x1, y1
# 计算权重
weight = math.sqrt(math.pow(x1 - x2, 2) + math.pow(y1 - y2, 2))
if weight != 0 and weight > min_weight:
# 计算K与b
k, b = calculate_line(x1, y1, x2, y2)
# print('k: {:.2f}, b: {:.2f}, weight: {:.2f}'.format(k, b, weight))
if len(lines) == 0:
# 初次填充line
line = {}
line['cur_k'] = k
line['cur_b'] = b
line['k_sum'] = k * weight
line['b_sum'] = b * weight
line['weight_sum'] = weight
line['x1'] = x1
line['y1'] = y1
line['x2'] = x2
line['y2'] = y2
lines.append(line)
continue
# 根据k的差异做加权
# 首先获取lines数组里面k举例最近的那个
neighbor_line = min(lines, key=lambda line:abs(line['cur_k'] - k))
if abs(neighbor_line['cur_k'] - k) < max_k_distance:
# 小于最大k差值,认为是同一条线
neighbor_line['weight_sum'] += weight
neighbor_line['k_sum'] += k * weight
neighbor_line['b_sum'] += b * weight
neighbor_line['cur_k'] = neighbor_line['k_sum'] / neighbor_line['weight_sum']
neighbor_line['cur_b'] = neighbor_line['b_sum'] / neighbor_line['weight_sum']
if neighbor_line['x1'] > x1:
neighbor_line['x1'] = x1
neighbor_line['y1'] = y1
if neighbor_line['x2'] < x2:
neighbor_line['x2'] = x2
neighbor_line['y2'] = y2
else:
# 添加另外一条线
# 初次填充line
line = {}
line['cur_k'] = k
line['cur_b'] = b
line['k_sum'] = k * weight
line['b_sum'] = b * weight
line['weight_sum'] = weight
line['x1'] = x1
line['y1'] = y1
line['x2'] = x2
line['y2'] = y2
lines.append(line)
做完上述的操作之后,我们获取的lines
的长度可能不是2, 可能会大于2. 所以我们可以根据weight_sum
对lines
进行重新排序, 然后截取前两个,作为激光十字的两条直线。
# 根据权重对lines数组进行排序, 取前两个(lines的长度有可能大于2)
sorted_lines = sorted(lines, key=lambda line: line['weight_sum'])[::-1]
line1 = sorted_lines[0]
line2 = sorted_lines[1]
[{'b_sum': -3304027.8377846032,
'cur_b': -482.1075439824276,
'cur_k': 1.0900334200603314,
'k_sum': 7470.32650483927,
'weight_sum': 6853.300428555484,
'x1': 478,
'x2': 1001,
'y1': 54,
'y2': 597},
{'b_sum': 8948293.312710544,
'cur_b': 1209.7121822845368,
'cur_k': -0.9799324921216083,
'k_sum': -7248.603010345705,
'weight_sum': 7397.043233715087,
'x1': 599,
'x2': 1113,
'y1': 607,
'y2': 129}]
4-计算交点
def calculate_intersection(line1, line2):
a1 = line1['y2'] - line1['y1']
b1 = line1['x1'] - line1['x2']
c1 = line1['x2'] * line1['y1'] - line1['x1'] * line1['y2']
a2 = line2['y2'] - line2['y1']
b2 = line2['x1'] - line2['x2']
c2 = line2['x2'] * line2['y1'] - line2['x1'] * line2['y2']
if (a1 * b2 - a2 * b1) != 0 and (a2 * b1 - a1 * b2) != 0:
cross_x = int((b1*c2-b2*c1)/(a1*b2-a2*b1))
cross_y = int((c1*a2-c2*a1)/(a1*b2-a2*b1))
return (cross_x, cross_y)
return None
计算交点:
(cx, cy) = calculate_intersection(line1, line2)
print('cx: {} cy: {}'.format(cx, cy))
cx: 816 cy: 405
5-信息可视化
在画面上绘制四个端点与中心交点:
canvas = cv2.cvtColor(binary, cv2.COLOR_GRAY2BGR)
# 绘制第一条线
pt_radius = 20
cv2.circle(canvas, (line1['x1'], line1['y1']),pt_radius, (255, 0, 0), thickness=-1)
cv2.circle(canvas, (line1['x2'], line1['y2']),pt_radius, (0, 255, 0), thickness=-1)
cv2.circle(canvas, (line2['x1'], line2['y1']),pt_radius, (0, 255, 255), thickness=-1)
cv2.circle(canvas, (line2['x2'], line2['y2']),pt_radius, (0, 0, 255), thickness=-1)
cv2.circle(canvas, (cx, cy), 40, (255, 0, 255), thickness=20)
plt.imshow(cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB))
plt.show()
cross-laser-demo.png
推广
出品:1Z实验室 (1ZLAB: Make Things Easy)
扫码关注微信公众号1Z实验室, 回复关键词激光十字源码 获取源码。
1Z实验室 Make Things Easy . 致力于在机器人+计算机视觉+人工智能的重叠区域, 制作小白友好的教程.
tuiguang
网友评论