人类研究人工智能这么多年,苦于不知道如何把自己的知识告诉计算机,以实现人类智能。--by李航
来自对李航老师的采访
有没有一种方法能够让机器做到和人一样触类旁通呢?李航认为还看不到这种可能,要想机器学习做到像人类一样触类旁通非常难,做到这一点还需要漫长的时间,至于是多久,他也无法给出准确的估计。
为什么机器无法和人一样触类旁通?这要从人的学习机制来看。一言以蔽之:人与机器的学习在本质上是完全不同的。
李航讲到,人和动物天然具有记忆和泛化能力,这其实是在做概念的存储和抽象。比如,老鼠吃了一次让它中毒的食物,就能认识到这种食物不能吃,下次看到同样的有毒食物就不会再去碰它。也就是说,只用了一个样本就把有毒食物的特点,如颜色和气味学到了(记忆了)。在这个过程中,老鼠做了抽象,因为食物的个体都不是完全一样的,老鼠能区分哪些东西属于同类。这些能力都是老鼠生来具有的,有很充分理由相信,人也具有同样的能力。
此外,人还具有一项重要的能力,它在人的学习或概念形成、推理、语言使用中起到最根本的作用,那就是联想。联想是什么?李航用一个简单的例子来做了说明,比如现在你看到一瓶水,你可能会联想到你昨晚也喝过这种水,或者它的生产厂家等。人的经历不同、场景不同,联想的内容也不同。人时时刻刻都会做联想,所以人的思考其实很大部分都是在找到相关的记忆。计算机做检索的过程其实也是在联想。我们产生新的概念、做创造发明、学习新知识等常常也是在做联想。即记忆的机制就是联想,发明创造的机制也是联想。
所以,人的这种最基本的思考机制是记忆、泛化、联想→学到知识。
但是,机器学习目前完全是基于统计,即依靠数据。李航表示,他的书之所以命名为《统计机器学习方法》,是为了强调理论和统计的重要性,因为在他的认知里,机器学习基本上约等于统计机器学习或统计学习,这也是目前业界的共识。未来也有可能出现其他的机器学习方法,但至少目前来说机器学习就是约等于统计学习。
统计机器学习最核心的想法,就是从大量数据中找到统计规律。即使是深度学习,本质上也是统计学习,用复杂的训练神经网络,表示找到的复杂的统计规律,去做一些看似智能,但本质上和人的智能机制不同的事情。
因此,机器学习与人类学习的本质完全不同,所以让机器达到与人一样触类旁通非常难。
网友评论