需求管理
从PyCom(比较全)和IBM LMiC两条路径可以观察LoRaWAN网关的设计需求:
- 激活方式:ABP(Activation By Personalization)/OTAA(OTA Activation)
- 工作频段:EU433/CN470/CN750/EU868/US915等
- 空口参数:SF调制度和BW频率宽度,IQ反相与否
- 数据率:DR Data Rate,CR,Preamble
- 设备识别:网关设备ID
- 配网参数:SSID/PSK WiFi
- 云端参数:主机、端口、TLS证书
- NTP参数:主机、端口
- DevEUI:设备识别号
- AppEUI:应用识别号
- AppKey:应用秘钥
- 时间精度:采用NTP授时还是GPS授时,主要是和定位有关联。而且最好采用多基站+TOA/TODA方式来定位。
Python源码
""" LoPy LoRaWAN Nano Gateway. Can be used for both EU868 and US915. """
import errno
import machine
import ubinascii
import ujson
import uos
import usocket
import utime
import _thread
from micropython import const
from network import LoRa
from network import WLAN
from machine import Timer
PROTOCOL_VERSION = const(2)
PUSH_DATA = const(0)
PUSH_ACK = const(1)
PULL_DATA = const(2)
PULL_ACK = const(4)
PULL_RESP = const(3)
TX_ERR_NONE = 'NONE'
TX_ERR_TOO_LATE = 'TOO_LATE'
TX_ERR_TOO_EARLY = 'TOO_EARLY'
TX_ERR_COLLISION_PACKET = 'COLLISION_PACKET'
TX_ERR_COLLISION_BEACON = 'COLLISION_BEACON'
TX_ERR_TX_FREQ = 'TX_FREQ'
TX_ERR_TX_POWER = 'TX_POWER'
TX_ERR_GPS_UNLOCKED = 'GPS_UNLOCKED'
UDP_THREAD_CYCLE_MS = const(10)
STAT_PK = {
'stat': {
'time': '',
'lati': 0,
'long': 0,
'alti': 0,
'rxnb': 0,
'rxok': 0,
'rxfw': 0,
'ackr': 100.0,
'dwnb': 0,
'txnb': 0
}
}
RX_PK = {
'rxpk': [{
'time': '',
'tmst': 0,
'chan': 0,
'rfch': 0,
'freq': 0,
'stat': 1,
'modu': 'LORA',
'datr': '',
'codr': '4/5',
'rssi': 0,
'lsnr': 0,
'size': 0,
'data': ''
}]
}
TX_ACK_PK = {
'txpk_ack': {
'error': ''
}
}
class NanoGateway:
"""
Nano gateway class, set up by default for use with TTN, but can be configured
for any other network supporting the Semtech Packet Forwarder.
Only required configuration is wifi_ssid and wifi_password which are used for
connecting to the Internet.
"""
def __init__(self, id, frequency, datarate, ssid, password, server, port, ntp_server='pool.ntp.org', ntp_period=3600):
self.id = id
self.server = server
self.port = port
self.frequency = frequency
self.datarate = datarate
self.ssid = ssid
self.password = password
self.ntp_server = ntp_server
self.ntp_period = ntp_period
self.server_ip = None
self.rxnb = 0
self.rxok = 0
self.rxfw = 0
self.dwnb = 0
self.txnb = 0
self.sf = self._dr_to_sf(self.datarate)
self.bw = self._dr_to_bw(self.datarate)
self.stat_alarm = None
self.pull_alarm = None
self.uplink_alarm = None
self.wlan = None
self.sock = None
self.udp_stop = False
self.udp_lock = _thread.allocate_lock()
self.lora = None
self.lora_sock = None
self.rtc = machine.RTC()
def start(self):
"""
Starts the LoRaWAN nano gateway.
"""
self._log('Starting LoRaWAN nano gateway with id: {}', self.id)
# setup WiFi as a station and connect
self.wlan = WLAN(mode=WLAN.STA)
self._connect_to_wifi()
# get a time sync
self._log('Syncing time with {} ...', self.ntp_server)
self.rtc.ntp_sync(self.ntp_server, update_period=self.ntp_period)
while not self.rtc.synced():
utime.sleep_ms(50)
self._log("RTC NTP sync complete")
# get the server IP and create an UDP socket
self.server_ip = usocket.getaddrinfo(self.server, self.port)[0][-1]
self._log('Opening UDP socket to {} ({}) port {}...', self.server, self.server_ip[0], self.server_ip[1])
self.sock = usocket.socket(usocket.AF_INET, usocket.SOCK_DGRAM, usocket.IPPROTO_UDP)
self.sock.setsockopt(usocket.SOL_SOCKET, usocket.SO_REUSEADDR, 1)
self.sock.setblocking(False)
# push the first time immediatelly
self._push_data(self._make_stat_packet())
# create the alarms
self.stat_alarm = Timer.Alarm(handler=lambda t: self._push_data(self._make_stat_packet()), s=60, periodic=True)
self.pull_alarm = Timer.Alarm(handler=lambda u: self._pull_data(), s=25, periodic=True)
# start the UDP receive thread
self.udp_stop = False
_thread.start_new_thread(self._udp_thread, ())
# initialize the LoRa radio in LORA mode
self._log('Setting up the LoRa radio at {} Mhz using {}', self._freq_to_float(self.frequency), self.datarate)
self.lora = LoRa(
mode=LoRa.LORA,
frequency=self.frequency,
bandwidth=self.bw,
sf=self.sf,
preamble=8,
coding_rate=LoRa.CODING_4_5,
tx_iq=True
)
# create a raw LoRa socket
self.lora_sock = usocket.socket(usocket.AF_LORA, usocket.SOCK_RAW)
self.lora_sock.setblocking(False)
self.lora_tx_done = False
self.lora.callback(trigger=(LoRa.RX_PACKET_EVENT | LoRa.TX_PACKET_EVENT), handler=self._lora_cb)
self._log('LoRaWAN nano gateway online')
def stop(self):
"""
Stops the LoRaWAN nano gateway.
"""
self._log('Stopping...')
# send the LoRa radio to sleep
self.lora.callback(trigger=None, handler=None)
self.lora.power_mode(LoRa.SLEEP)
# stop the NTP sync
self.rtc.ntp_sync(None)
# cancel all the alarms
self.stat_alarm.cancel()
self.pull_alarm.cancel()
# signal the UDP thread to stop
self.udp_stop = True
while self.udp_stop:
utime.sleep_ms(50)
# disable WLAN
self.wlan.disconnect()
self.wlan.deinit()
def _connect_to_wifi(self):
self.wlan.connect(self.ssid, auth=(None, self.password))
while not self.wlan.isconnected():
utime.sleep_ms(50)
self._log('WiFi connected to: {}', self.ssid)
def _dr_to_sf(self, dr):
sf = dr[2:4]
if sf[1] not in '0123456789':
sf = sf[:1]
return int(sf)
def _dr_to_bw(self, dr):
bw = dr[-5:]
if bw == 'BW125':
return LoRa.BW_125KHZ
elif bw == 'BW250':
return LoRa.BW_250KHZ
else:
return LoRa.BW_500KHZ
def _sf_bw_to_dr(self, sf, bw):
dr = 'SF' + str(sf)
if bw == LoRa.BW_125KHZ:
return dr + 'BW125'
elif bw == LoRa.BW_250KHZ:
return dr + 'BW250'
else:
return dr + 'BW500'
def _lora_cb(self, lora):
"""
LoRa radio events callback handler.
"""
events = lora.events()
if events & LoRa.RX_PACKET_EVENT:
self.rxnb += 1
self.rxok += 1
rx_data = self.lora_sock.recv(256)
stats = lora.stats()
packet = self._make_node_packet(rx_data, self.rtc.now(), stats.rx_timestamp, stats.sfrx, self.bw, stats.rssi, stats.snr)
self._push_data(packet)
self._log('Received packet: {}', packet)
self.rxfw += 1
if events & LoRa.TX_PACKET_EVENT:
self.txnb += 1
lora.init(
mode=LoRa.LORA,
frequency=self.frequency,
bandwidth=self.bw,
sf=self.sf,
preamble=8,
coding_rate=LoRa.CODING_4_5,
tx_iq=True
)
def _freq_to_float(self, frequency):
"""
MicroPython has some inprecision when doing large float division.
To counter this, this method first does integer division until we
reach the decimal breaking point. This doesn't completely elimate
the issue in all cases, but it does help for a number of commonly
used frequencies.
"""
divider = 6
while divider > 0 and frequency % 10 == 0:
frequency = frequency // 10
divider -= 1
if divider > 0:
frequency = frequency / (10 ** divider)
return frequency
def _make_stat_packet(self):
now = self.rtc.now()
STAT_PK["stat"]["time"] = "%d-%02d-%02d %02d:%02d:%02d GMT" % (now[0], now[1], now[2], now[3], now[4], now[5])
STAT_PK["stat"]["rxnb"] = self.rxnb
STAT_PK["stat"]["rxok"] = self.rxok
STAT_PK["stat"]["rxfw"] = self.rxfw
STAT_PK["stat"]["dwnb"] = self.dwnb
STAT_PK["stat"]["txnb"] = self.txnb
return ujson.dumps(STAT_PK)
def _make_node_packet(self, rx_data, rx_time, tmst, sf, bw, rssi, snr):
RX_PK["rxpk"][0]["time"] = "%d-%02d-%02dT%02d:%02d:%02d.%dZ" % (rx_time[0], rx_time[1], rx_time[2], rx_time[3], rx_time[4], rx_time[5], rx_time[6])
RX_PK["rxpk"][0]["tmst"] = tmst
RX_PK["rxpk"][0]["freq"] = self._freq_to_float(self.frequency)
RX_PK["rxpk"][0]["datr"] = self._sf_bw_to_dr(sf, bw)
RX_PK["rxpk"][0]["rssi"] = rssi
RX_PK["rxpk"][0]["lsnr"] = snr
RX_PK["rxpk"][0]["data"] = ubinascii.b2a_base64(rx_data)[:-1]
RX_PK["rxpk"][0]["size"] = len(rx_data)
return ujson.dumps(RX_PK)
def _push_data(self, data):
token = uos.urandom(2)
packet = bytes([PROTOCOL_VERSION]) + token + bytes([PUSH_DATA]) + ubinascii.unhexlify(self.id) + data
with self.udp_lock:
try:
self.sock.sendto(packet, self.server_ip)
except Exception as ex:
self._log('Failed to push uplink packet to server: {}', ex)
def _pull_data(self):
token = uos.urandom(2)
packet = bytes([PROTOCOL_VERSION]) + token + bytes([PULL_DATA]) + ubinascii.unhexlify(self.id)
with self.udp_lock:
try:
self.sock.sendto(packet, self.server_ip)
except Exception as ex:
self._log('Failed to pull downlink packets from server: {}', ex)
def _ack_pull_rsp(self, token, error):
TX_ACK_PK["txpk_ack"]["error"] = error
resp = ujson.dumps(TX_ACK_PK)
packet = bytes([PROTOCOL_VERSION]) + token + bytes([PULL_ACK]) + ubinascii.unhexlify(self.id) + resp
with self.udp_lock:
try:
self.sock.sendto(packet, self.server_ip)
except Exception as ex:
self._log('PULL RSP ACK exception: {}', ex)
def _send_down_link(self, data, tmst, datarate, frequency):
"""
Transmits a downlink message over LoRa.
"""
self.lora.init(
mode=LoRa.LORA,
frequency=frequency,
bandwidth=self._dr_to_bw(datarate),
sf=self._dr_to_sf(datarate),
preamble=8,
coding_rate=LoRa.CODING_4_5,
tx_iq=True
)
while utime.ticks_cpu() < tmst:
pass
self.lora_sock.send(data)
self._log(
'Sent downlink packet scheduled on {:.3f}, at {:.3f} Mhz using {}: {}',
tmst / 1000000,
self._freq_to_float(frequency),
datarate,
data
)
def _udp_thread(self):
"""
UDP thread, reads data from the server and handles it.
"""
while not self.udp_stop:
try:
data, src = self.sock.recvfrom(1024)
_token = data[1:3]
_type = data[3]
if _type == PUSH_ACK:
self._log("Push ack")
elif _type == PULL_ACK:
self._log("Pull ack")
elif _type == PULL_RESP:
self.dwnb += 1
ack_error = TX_ERR_NONE
tx_pk = ujson.loads(data[4:])
tmst = tx_pk["txpk"]["tmst"]
t_us = tmst - utime.ticks_cpu() - 15000
if t_us < 0:
t_us += 0xFFFFFFFF
if t_us < 20000000:
self.uplink_alarm = Timer.Alarm(
handler=lambda x: self._send_down_link(
ubinascii.a2b_base64(tx_pk["txpk"]["data"]),
tx_pk["txpk"]["tmst"] - 50, tx_pk["txpk"]["datr"],
int(tx_pk["txpk"]["freq"] * 1000) * 1000
),
us=t_us
)
else:
ack_error = TX_ERR_TOO_LATE
self._log('Downlink timestamp error!, t_us: {}', t_us)
self._ack_pull_rsp(_token, ack_error)
self._log("Pull rsp")
except usocket.timeout:
pass
except OSError as ex:
if ex.errno != errno.EAGAIN:
self._log('UDP recv OSError Exception: {}', ex)
except Exception as ex:
self._log('UDP recv Exception: {}', ex)
# wait before trying to receive again
utime.sleep_ms(UDP_THREAD_CYCLE_MS)
# we are to close the socket
self.sock.close()
self.udp_stop = False
self._log('UDP thread stopped')
def _log(self, message, *args):
"""
Outputs a log message to stdout.
"""
print('[{:>10.3f}] {}'.format(
utime.ticks_ms() / 1000,
str(message).format(*args)
))
Arduino C++ 源码
/*******************************************************************************
*
* Copyright (c) 2015 Thomas Telkamp
*
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
*******************************************************************************/
#include <string>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <string.h>
#include <iostream>
#include <cstdlib>
#include <sys/time.h>
#include <cstring>
#include <sys/ioctl.h>
#include <net/if.h>
using namespace std;
#include "base64.h"
#include <wiringPi.h>
#include <wiringPiSPI.h>
typedef bool boolean;
typedef unsigned char byte;
static const int CHANNEL = 0;
byte currentMode = 0x81;
char message[256];
char b64[256];
bool sx1272 = true;
byte receivedbytes;
struct sockaddr_in si_other;
int s, slen=sizeof(si_other);
struct ifreq ifr;
uint32_t cp_nb_rx_rcv;
uint32_t cp_nb_rx_ok;
uint32_t cp_nb_rx_bad;
uint32_t cp_nb_rx_nocrc;
uint32_t cp_up_pkt_fwd;
enum sf_t { SF7=7, SF8, SF9, SF10, SF11, SF12 };
/*******************************************************************************
*
* Configure these values!
*
*******************************************************************************/
// SX1272 - Raspberry connections
int ssPin = 6;
int dio0 = 7;
int RST = 0;
// Set spreading factor (SF7 - SF12)
sf_t sf = SF7;
// Set center frequency
uint32_t freq = 868100000; // in Mhz! (868.1)
// Set location
float lat=0.0;
float lon=0.0;
int alt=0;
/* Informal status fields */
static char platform[24] = "Single Channel Gateway"; /* platform definition */
static char email[40] = ""; /* used for contact email */
static char description[64] = ""; /* used for free form description */
// define servers
// TODO: use host names and dns
#define SERVER1 "54.72.145.119" // The Things Network: croft.thethings.girovito.nl
//#define SERVER2 "192.168.1.10" // local
#define PORT 1700 // The port on which to send data
// #############################################
// #############################################
#define REG_FIFO 0x00
#define REG_FIFO_ADDR_PTR 0x0D
#define REG_FIFO_TX_BASE_AD 0x0E
#define REG_FIFO_RX_BASE_AD 0x0F
#define REG_RX_NB_BYTES 0x13
#define REG_OPMODE 0x01
#define REG_FIFO_RX_CURRENT_ADDR 0x10
#define REG_IRQ_FLAGS 0x12
#define REG_DIO_MAPPING_1 0x40
#define REG_DIO_MAPPING_2 0x41
#define REG_MODEM_CONFIG 0x1D
#define REG_MODEM_CONFIG2 0x1E
#define REG_MODEM_CONFIG3 0x26
#define REG_SYMB_TIMEOUT_LSB 0x1F
#define REG_PKT_SNR_VALUE 0x19
#define REG_PAYLOAD_LENGTH 0x22
#define REG_IRQ_FLAGS_MASK 0x11
#define REG_MAX_PAYLOAD_LENGTH 0x23
#define REG_HOP_PERIOD 0x24
#define REG_SYNC_WORD 0x39
#define REG_VERSION 0x42
#define SX72_MODE_RX_CONTINUOS 0x85
#define SX72_MODE_TX 0x83
#define SX72_MODE_SLEEP 0x80
#define SX72_MODE_STANDBY 0x81
#define PAYLOAD_LENGTH 0x40
// LOW NOISE AMPLIFIER
#define REG_LNA 0x0C
#define LNA_MAX_GAIN 0x23
#define LNA_OFF_GAIN 0x00
#define LNA_LOW_GAIN 0x20
// CONF REG
#define REG1 0x0A
#define REG2 0x84
#define SX72_MC2_FSK 0x00
#define SX72_MC2_SF7 0x70
#define SX72_MC2_SF8 0x80
#define SX72_MC2_SF9 0x90
#define SX72_MC2_SF10 0xA0
#define SX72_MC2_SF11 0xB0
#define SX72_MC2_SF12 0xC0
#define SX72_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated for SF11 and SF12
// FRF
#define REG_FRF_MSB 0x06
#define REG_FRF_MID 0x07
#define REG_FRF_LSB 0x08
#define FRF_MSB 0xD9 // 868.1 Mhz
#define FRF_MID 0x06
#define FRF_LSB 0x66
#define BUFLEN 2048 //Max length of buffer
#define PROTOCOL_VERSION 1
#define PKT_PUSH_DATA 0
#define PKT_PUSH_ACK 1
#define PKT_PULL_DATA 2
#define PKT_PULL_RESP 3
#define PKT_PULL_ACK 4
#define TX_BUFF_SIZE 2048
#define STATUS_SIZE 1024
void die(const char *s)
{
perror(s);
exit(1);
}
void selectreceiver()
{
digitalWrite(ssPin, LOW);
}
void unselectreceiver()
{
digitalWrite(ssPin, HIGH);
}
byte readRegister(byte addr)
{
unsigned char spibuf[2];
selectreceiver();
spibuf[0] = addr & 0x7F;
spibuf[1] = 0x00;
wiringPiSPIDataRW(CHANNEL, spibuf, 2);
unselectreceiver();
return spibuf[1];
}
void writeRegister(byte addr, byte value)
{
unsigned char spibuf[2];
spibuf[0] = addr | 0x80;
spibuf[1] = value;
selectreceiver();
wiringPiSPIDataRW(CHANNEL, spibuf, 2);
unselectreceiver();
}
boolean receivePkt(char *payload)
{
// clear rxDone
writeRegister(REG_IRQ_FLAGS, 0x40);
int irqflags = readRegister(REG_IRQ_FLAGS);
cp_nb_rx_rcv++;
// payload crc: 0x20
if((irqflags & 0x20) == 0x20)
{
printf("CRC error\n");
writeRegister(REG_IRQ_FLAGS, 0x20);
return false;
} else {
cp_nb_rx_ok++;
byte currentAddr = readRegister(REG_FIFO_RX_CURRENT_ADDR);
byte receivedCount = readRegister(REG_RX_NB_BYTES);
receivedbytes = receivedCount;
writeRegister(REG_FIFO_ADDR_PTR, currentAddr);
for(int i = 0; i < receivedCount; i++)
{
payload[i] = (char)readRegister(REG_FIFO);
}
}
return true;
}
void SetupLoRa()
{
digitalWrite(RST, HIGH);
delay(100);
digitalWrite(RST, LOW);
delay(100);
byte version = readRegister(REG_VERSION);
if (version == 0x22) {
// sx1272
printf("SX1272 detected, starting.\n");
sx1272 = true;
} else {
// sx1276?
digitalWrite(RST, LOW);
delay(100);
digitalWrite(RST, HIGH);
delay(100);
version = readRegister(REG_VERSION);
if (version == 0x12) {
// sx1276
printf("SX1276 detected, starting.\n");
sx1272 = false;
} else {
printf("Unrecognized transceiver.\n");
//printf("Version: 0x%x\n",version);
exit(1);
}
}
writeRegister(REG_OPMODE, SX72_MODE_SLEEP);
// set frequency
uint64_t frf = ((uint64_t)freq << 19) / 32000000;
writeRegister(REG_FRF_MSB, (uint8_t)(frf>>16) );
writeRegister(REG_FRF_MID, (uint8_t)(frf>> 8) );
writeRegister(REG_FRF_LSB, (uint8_t)(frf>> 0) );
writeRegister(REG_SYNC_WORD, 0x34); // LoRaWAN public sync word
if (sx1272) {
if (sf == SF11 || sf == SF12) {
writeRegister(REG_MODEM_CONFIG,0x0B);
} else {
writeRegister(REG_MODEM_CONFIG,0x0A);
}
writeRegister(REG_MODEM_CONFIG2,(sf<<4) | 0x04);
} else {
if (sf == SF11 || sf == SF12) {
writeRegister(REG_MODEM_CONFIG3,0x0C);
} else {
writeRegister(REG_MODEM_CONFIG3,0x04);
}
writeRegister(REG_MODEM_CONFIG,0x72);
writeRegister(REG_MODEM_CONFIG2,(sf<<4) | 0x04);
}
if (sf == SF10 || sf == SF11 || sf == SF12) {
writeRegister(REG_SYMB_TIMEOUT_LSB,0x05);
} else {
writeRegister(REG_SYMB_TIMEOUT_LSB,0x08);
}
writeRegister(REG_MAX_PAYLOAD_LENGTH,0x80);
writeRegister(REG_PAYLOAD_LENGTH,PAYLOAD_LENGTH);
writeRegister(REG_HOP_PERIOD,0xFF);
writeRegister(REG_FIFO_ADDR_PTR, readRegister(REG_FIFO_RX_BASE_AD));
// Set Continous Receive Mode
writeRegister(REG_LNA, LNA_MAX_GAIN); // max lna gain
writeRegister(REG_OPMODE, SX72_MODE_RX_CONTINUOS);
}
void sendudp(char *msg, int length) {
//send the update
#ifdef SERVER1
inet_aton(SERVER1 , &si_other.sin_addr);
if (sendto(s, (char *)msg, length, 0 , (struct sockaddr *) &si_other, slen)==-1)
{
die("sendto()");
}
#endif
#ifdef SERVER2
inet_aton(SERVER2 , &si_other.sin_addr);
if (sendto(s, (char *)msg, length , 0 , (struct sockaddr *) &si_other, slen)==-1)
{
die("sendto()");
}
#endif
}
void sendstat() {
static char status_report[STATUS_SIZE]; /* status report as a JSON object */
char stat_timestamp[24];
time_t t;
int stat_index=0;
/* pre-fill the data buffer with fixed fields */
status_report[0] = PROTOCOL_VERSION;
status_report[3] = PKT_PUSH_DATA;
status_report[4] = (unsigned char)ifr.ifr_hwaddr.sa_data[0];
status_report[5] = (unsigned char)ifr.ifr_hwaddr.sa_data[1];
status_report[6] = (unsigned char)ifr.ifr_hwaddr.sa_data[2];
status_report[7] = 0xFF;
status_report[8] = 0xFF;
status_report[9] = (unsigned char)ifr.ifr_hwaddr.sa_data[3];
status_report[10] = (unsigned char)ifr.ifr_hwaddr.sa_data[4];
status_report[11] = (unsigned char)ifr.ifr_hwaddr.sa_data[5];
/* start composing datagram with the header */
uint8_t token_h = (uint8_t)rand(); /* random token */
uint8_t token_l = (uint8_t)rand(); /* random token */
status_report[1] = token_h;
status_report[2] = token_l;
stat_index = 12; /* 12-byte header */
/* get timestamp for statistics */
t = time(NULL);
strftime(stat_timestamp, sizeof stat_timestamp, "%F %T %Z", gmtime(&t));
int j = snprintf((char *)(status_report + stat_index), STATUS_SIZE-stat_index, "{\"stat\":{\"time\":\"%s\",\"lati\":%.5f,\"long\":%.5f,\"alti\":%i,\"rxnb\":%u,\"rxok\":%u,\"rxfw\":%u,\"ackr\":%.1f,\"dwnb\":%u,\"txnb\":%u,\"pfrm\":\"%s\",\"mail\":\"%s\",\"desc\":\"%s\"}}", stat_timestamp, lat, lon, (int)alt, cp_nb_rx_rcv, cp_nb_rx_ok, cp_up_pkt_fwd, (float)0, 0, 0,platform,email,description);
stat_index += j;
status_report[stat_index] = 0; /* add string terminator, for safety */
printf("stat update: %s\n", (char *)(status_report+12)); /* DEBUG: display JSON stat */
//send the update
sendudp(status_report, stat_index);
}
void receivepacket() {
long int SNR;
int rssicorr;
if(digitalRead(dio0) == 1)
{
if(receivePkt(message)) {
byte value = readRegister(REG_PKT_SNR_VALUE);
if( value & 0x80 ) // The SNR sign bit is 1
{
// Invert and divide by 4
value = ( ( ~value + 1 ) & 0xFF ) >> 2;
SNR = -value;
}
else
{
// Divide by 4
SNR = ( value & 0xFF ) >> 2;
}
if (sx1272) {
rssicorr = 139;
} else {
rssicorr = 157;
}
printf("Packet RSSI: %d, ",readRegister(0x1A)-rssicorr);
printf("RSSI: %d, ",readRegister(0x1B)-rssicorr);
printf("SNR: %li, ",SNR);
printf("Length: %i",(int)receivedbytes);
printf("\n");
int j;
j = bin_to_b64((uint8_t *)message, receivedbytes, (char *)(b64), 341);
//fwrite(b64, sizeof(char), j, stdout);
char buff_up[TX_BUFF_SIZE]; /* buffer to compose the upstream packet */
int buff_index=0;
/* gateway <-> MAC protocol variables */
//static uint32_t net_mac_h; /* Most Significant Nibble, network order */
//static uint32_t net_mac_l; /* Least Significant Nibble, network order */
/* pre-fill the data buffer with fixed fields */
buff_up[0] = PROTOCOL_VERSION;
buff_up[3] = PKT_PUSH_DATA;
/* process some of the configuration variables */
//net_mac_h = htonl((uint32_t)(0xFFFFFFFF & (lgwm>>32)));
//net_mac_l = htonl((uint32_t)(0xFFFFFFFF & lgwm ));
//*(uint32_t *)(buff_up + 4) = net_mac_h;
//*(uint32_t *)(buff_up + 8) = net_mac_l;
buff_up[4] = (unsigned char)ifr.ifr_hwaddr.sa_data[0];
buff_up[5] = (unsigned char)ifr.ifr_hwaddr.sa_data[1];
buff_up[6] = (unsigned char)ifr.ifr_hwaddr.sa_data[2];
buff_up[7] = 0xFF;
buff_up[8] = 0xFF;
buff_up[9] = (unsigned char)ifr.ifr_hwaddr.sa_data[3];
buff_up[10] = (unsigned char)ifr.ifr_hwaddr.sa_data[4];
buff_up[11] = (unsigned char)ifr.ifr_hwaddr.sa_data[5];
/* start composing datagram with the header */
uint8_t token_h = (uint8_t)rand(); /* random token */
uint8_t token_l = (uint8_t)rand(); /* random token */
buff_up[1] = token_h;
buff_up[2] = token_l;
buff_index = 12; /* 12-byte header */
// TODO: tmst can jump is time is (re)set, not good.
struct timeval now;
gettimeofday(&now, NULL);
uint32_t tmst = (uint32_t)(now.tv_sec*1000000 + now.tv_usec);
/* start of JSON structure */
memcpy((void *)(buff_up + buff_index), (void *)"{\"rxpk\":[", 9);
buff_index += 9;
buff_up[buff_index] = '{';
++buff_index;
j = snprintf((char *)(buff_up + buff_index), TX_BUFF_SIZE-buff_index, "\"tmst\":%u", tmst);
buff_index += j;
j = snprintf((char *)(buff_up + buff_index), TX_BUFF_SIZE-buff_index, ",\"chan\":%1u,\"rfch\":%1u,\"freq\":%.6lf", 0, 0, (double)freq/1000000);
buff_index += j;
memcpy((void *)(buff_up + buff_index), (void *)",\"stat\":1", 9);
buff_index += 9;
memcpy((void *)(buff_up + buff_index), (void *)",\"modu\":\"LORA\"", 14);
buff_index += 14;
/* Lora datarate & bandwidth, 16-19 useful chars */
switch (sf) {
case SF7:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF7", 12);
buff_index += 12;
break;
case SF8:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF8", 12);
buff_index += 12;
break;
case SF9:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF9", 12);
buff_index += 12;
break;
case SF10:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF10", 13);
buff_index += 13;
break;
case SF11:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF11", 13);
buff_index += 13;
break;
case SF12:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF12", 13);
buff_index += 13;
break;
default:
memcpy((void *)(buff_up + buff_index), (void *)",\"datr\":\"SF?", 12);
buff_index += 12;
}
memcpy((void *)(buff_up + buff_index), (void *)"BW125\"", 6);
buff_index += 6;
memcpy((void *)(buff_up + buff_index), (void *)",\"codr\":\"4/5\"", 13);
buff_index += 13;
j = snprintf((char *)(buff_up + buff_index), TX_BUFF_SIZE-buff_index, ",\"lsnr\":%li", SNR);
buff_index += j;
j = snprintf((char *)(buff_up + buff_index), TX_BUFF_SIZE-buff_index, ",\"rssi\":%d,\"size\":%u", readRegister(0x1A)-rssicorr, receivedbytes);
buff_index += j;
memcpy((void *)(buff_up + buff_index), (void *)",\"data\":\"", 9);
buff_index += 9;
j = bin_to_b64((uint8_t *)message, receivedbytes, (char *)(buff_up + buff_index), 341);
buff_index += j;
buff_up[buff_index] = '"';
++buff_index;
/* End of packet serialization */
buff_up[buff_index] = '}';
++buff_index;
buff_up[buff_index] = ']';
++buff_index;
/* end of JSON datagram payload */
buff_up[buff_index] = '}';
++buff_index;
buff_up[buff_index] = 0; /* add string terminator, for safety */
printf("rxpk update: %s\n", (char *)(buff_up + 12)); /* DEBUG: display JSON payload */
//send the messages
sendudp(buff_up, buff_index);
fflush(stdout);
} // received a message
} // dio0=1
}
int main () {
struct timeval nowtime;
uint32_t lasttime;
wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);
//int fd =
wiringPiSPISetup(CHANNEL, 500000);
//cout << "Init result: " << fd << endl;
SetupLoRa();
if ( (s=socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1)
{
die("socket");
}
memset((char *) &si_other, 0, sizeof(si_other));
si_other.sin_family = AF_INET;
si_other.sin_port = htons(PORT);
ifr.ifr_addr.sa_family = AF_INET;
strncpy(ifr.ifr_name, "eth0", IFNAMSIZ-1); // can we rely on eth0?
ioctl(s, SIOCGIFHWADDR, &ifr);
/* display result */
printf("Gateway ID: %.2x:%.2x:%.2x:ff:ff:%.2x:%.2x:%.2x\n",
(unsigned char)ifr.ifr_hwaddr.sa_data[0],
(unsigned char)ifr.ifr_hwaddr.sa_data[1],
(unsigned char)ifr.ifr_hwaddr.sa_data[2],
(unsigned char)ifr.ifr_hwaddr.sa_data[3],
(unsigned char)ifr.ifr_hwaddr.sa_data[4],
(unsigned char)ifr.ifr_hwaddr.sa_data[5]);
printf("Listening at SF%i on %.6lf Mhz.\n", sf,(double)freq/1000000);
printf("------------------\n");
while(1) {
receivepacket();
gettimeofday(&nowtime, NULL);
uint32_t nowseconds = (uint32_t)(nowtime.tv_sec);
if (nowseconds - lasttime >= 30) {
lasttime = nowseconds;
sendstat();
cp_nb_rx_rcv = 0;
cp_nb_rx_ok = 0;
cp_up_pkt_fwd = 0;
}
delay(1);
}
return (0);
}
网友评论