A Neural Probabilistic Language

作者: CurryCoder | 来源:发表于2019-02-26 16:41 被阅读28次

    1.词向量介绍

    • 在NLP任务中,第一步首先将自然语言转化成数学符号表示。一般常用的词汇表示方法:one-hot表示,这种方法是将每个单词表示为一个很长的向量,这个向量的长度是词汇表的大小,其中绝大数元素是0,只有一个元素是1,如“男人”表示为:[0 0 0 1 0 0 0 0 0 0...],“男孩”表示为:[0 1 0 0 0 0 0 0 0 0...]。one-hot方法采用稀疏的方式进行单词的表示,非常的简洁。即为每个单词分配一个数字ID号,数字ID号对应于每个单词在词汇表中的索引。比如“国王”这个词语在词汇表中的索引是3,“男孩”这个词语在词汇表中的索引是1。
    • one-hot编码单词存在的问题:每个one-hot向量之间是相互正交的,任意两个单词之间是相互独立的,仅从one-hot表示出的词向量中无法看出两个单词之间是否有关系,即使是同义词也是相互独立。
    • 大多数NLP任务中,一般用到的词向量并不是one-hot表示出来的维数很长的词向量,而是采用一种"Distributed Representation"的表示方法来表示一种低维实数向量。这个词向量的表示一般是这样的:[0.792,-0.177,-0.107,0.109,-0.542,...],维度以5o和100维比较常见,这种向量的表示也不唯一。
    • Distributed Representation最大的贡献是让相关或相似的词,在距离上更接近。向量的距离可以是传统的欧式距离衡量,也可以使用余弦相似度cosine来衡量。

    2.词向量的来历

    • Distributed representation 最早是 Hinton 在 1986 年的论文《Learning distributed representations of concepts》中提出的。Distributed representation 用来表示词,通常被称为“Word Representation”或“Word Embedding”,中文俗称“词向量”或“词嵌入”。
    • 如果用传统的稀疏表示法表示单词,在解决某些任务的时候(比如构建语言模型)会造成维数灾难[Bengio 2003]。使用低维的词向量就没这样的问题。同时从实践上看,高维的特征如果要套用 Deep Learning,其复杂度几乎是难以接受的,因此低维的词向量在这里也备受追捧。

    3.词向量的训练

    • 在介绍如何训练词向量之前,必须先介绍语言模型。因为对于大多数的训练方法,都是在训练语言模型的同时,顺便得到词向量的,词向量只是训练语言模型过程中的“意外之物”。从大量未标注的普通文本数据中无监督地学习出词向量,建立一个语言模型。
    • 语言模型的作用就是检测一句话是不是正常人说出来的,语言模型意义重大。比如机器翻译、语音识别得到若干候选选项后,可以利用语言模型挑选一个尽量准确的结果。在其他NLP任务中都能用到。
    • 语言模型形像化的解释是:给定一句话,看它是自然语言的概率P(w1,w2,w3,..,wt)是多少。w1到wt依次表示这句话中的每个单词,简单的推论是:P(w1,w2,w3...,wt)=P(w1)P(w2|w1)P(w3|w1,w2)*...P(wt|w1,w2,...,wt-1),常用的语言模型都是在求P(wt|w1,w2,...,wt-1)的值,比如n-gram模型就是用P(wt|w1,w2,...,wt-1)近似代替P(w1,w2,w3...,wt)

    4.A Neural Probabilistic Language Model 原理解释

    • 训练语言模型的最经典之作,要数 Bengio 等人在 2001 年发表在 NIPS 上的文章《A Neural Probabilistic Language Model》,Bengio 用了一个三层的神经网络来构建语言模型,同样也是 n-gram 模型,如下图所示。


      Neural Probabilistic Language Model原理图.png
    • 目标:上图中最下方的wt-n+1,...,wt-2,wt-1就是前n-1个单词,现在根据这已知的n-1个单词预测下一个单词wt。
    • 数学符号说明:
      • C(w):表示单词w对应的词向量,整个模型中使用一套唯一的词向量。
      • C:词向量C(w)存在于矩阵C(|V|*m)中,矩阵C的行数表示词汇表的大小;列数表示词向量C(w)的维度。矩阵C的某一行对应一个单词的词向量表示。
      • |V|:表示词汇表的大小,即语料库中的单词总数
      • m:表示词向量C(w)的维度,一般是50到100
      • w到C(w)的转化:从矩阵C中取出一行
      • d:隐藏层偏置bias(h)
      • H: 隐藏层的权重(h*(n-1)m)
      • U:隐藏层到输出层的权重(|V|*h)
      • b:输出层的偏置bias(|V|)
      • W:输入层到输出层权重(|V|*(n-1)m)
      • h:隐藏层神经元的数量
    • 网络的第一层(输入层)是将C(wt-n+1),...,C(wt-2),C(wt-1)这已知的n-1和单词的词向量首尾相连拼接起来,形成(n-1)w的向量,下面用x表示。
    • 网络的第二层(隐藏层)直接用d+Hx计算得到,d是一个偏置项。之后,用tanh作为激活函数。
    • 网络的第三层(输出层)一共有|V|个节点,每个节点yi表示下一个单词i的未归一化log概率。最后使用softmax函数将输出值y归一化成概率,最终y的计算公式如下:
      y = b + Wx + Utanh(d+Hx)
    • 最后,用随机梯度下降法把这个模型优化出来就可以了。

    5.代码实现---PyTorch版本

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @Date    : 2019-02-26 14:15:49
    # @Author  : cdl (1217096231@qq.com)
    # @Link    : https://github.com/cdlwhm1217096231/python3_spider
    # @Version : $Id$
    
    
    import torch
    import numpy as np
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torch.autograd import Variable
    
    """
    1.Basic Embedding Model
        1-1. NNLM(Neural Network Language Model)
    """
    
    dtype = torch.FloatTensor
    sentences = ["i like dog", "i love coffee", "i hate milk"]
    
    word_list = " ".join(sentences).split()  # 制作词汇表
    print(word_list)
    word_list = list(set(word_list))  # 去除词汇表中的重复元素
    print("去重后的word_list:", word_list)
    word_dict = {w: i for i, w in enumerate(word_list)}  # 将每个单词对应于相应的索引
    number_dict = {i: w for i, w in enumerate(word_list)}  # 将每个索引对应于相应的单词
    n_class = len(word_dict)  # 单词的总数
    
    # NNLM parameters
    n_step = 2   # 根据前两个单词预测第3个单词
    n_hidden = 2  # 隐藏层神经元的个数
    m = 2  # 词向量的维度
    
    
    # 由于pytorch中输入的数据是以batch小批量进行输入的,下面的函数就是将原始数据以一个batch为基本单位喂给模型
    def make_batch(sentences):
        input_batch = []
        target_batch = []
        for sentence in sentences:
            word = sentence.split()
            input = [word_dict[w] for w in word[:-1]]
            target = word_dict[word[-1]]
            input_batch.append(input)
            target_batch.append(target)
        return input_batch, target_batch
    
    # Model
    
    
    class NNLM(nn.Module):
        def __init__(self):
            super(NNLM, self).__init__()
            self.C = nn.Embedding(n_class, embedding_dim=m)
            self.H = nn.Parameter(torch.randn(n_step * m, n_hidden).type(dtype))
            self.W = nn.Parameter(torch.randn(n_step * m, n_class).type(dtype))
            self.d = nn.Parameter(torch.randn(n_hidden).type(dtype))
            self.U = nn.Parameter(torch.randn(n_hidden, n_class).type(dtype))
            self.b = nn.Parameter(torch.randn(n_class).type(dtype))
    
        def forward(self, x):
            x = self.C(x)
            x = x.view(-1, n_step * m)
            # x: [batch_size, n_step*n_class]
            tanh = torch.tanh(self.d + torch.mm(x, self.H))
            # tanh: [batch_size, n_hidden]
            output = self.b + torch.mm(x, self.W) + torch.mm(tanh, self.U)
            # output: [batch_size, n_class]
            return output
    
    
    model = NNLM()
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    
    # 制作输入
    input_batch, target_batch = make_batch(sentences)
    input_batch = Variable(torch.LongTensor(input_batch))
    target_batch = Variable(torch.LongTensor(target_batch))
    
    
    # 开始训练
    for epoch in range(5000):
        optimizer.zero_grad()
        output = model(input_batch)
    # output : [batch_size, n_class], target_batch : [batch_size] (LongTensor, not one-hot)
        loss = criterion(output, target_batch)
        if (epoch + 1) % 1000 == 0:
            print("Epoch:{}".format(epoch + 1), "Loss:{:.3f}".format(loss))
        loss.backward()
        optimizer.step()
    
    # 预测
    predict = model(input_batch).data.max(
        1, keepdim=True)[1]  # [batch_size, n_class]
    print("predict: \n", predict)
    # 测试
    print([sentence.split()[:2] for sentence in sentences], "---->",
          [number_dict[n.item()] for n in predict.squeeze()])
    

    6.结果

    ['i', 'like', 'dog', 'i', 'love', 'coffee', 'i', 'hate', 'milk']
    去重后的word_list: ['coffee', 'i', 'hate', 'dog', 'love', 'milk', 'like']
    Epoch:1000 Loss:0.114
    Epoch:2000 Loss:0.021
    Epoch:3000 Loss:0.007
    Epoch:4000 Loss:0.003
    Epoch:5000 Loss:0.002
    predict: 
     tensor([[3],
            [0],
            [5]])
    [['i', 'like'], ['i', 'love'], ['i', 'hate']] ----> ['dog', 'coffee', 'milk']
    [Finished in 4.5s]
    

    7.代码实现----TensorFlow版本

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @Date    : 2019-02-26 21:25:01
    # @Author  : cdl (1217096231@qq.com)
    # @Link    : https://github.com/cdlwhm1217096231/python3_spider
    # @Version : $Id$
    
    import numpy as np
    import tensorflow as tf
    
    
    tf.reset_default_graph()
    
    
    sentences = ["i like coffee", "i love curry", "i hate apple"]
    word_list = " ".join(sentences).split()
    word_list = list(set(word_list))
    print(word_list)
    
    word_dict = {w: i for i, w in enumerate(word_list)}
    number_dict = {i: w for i, w in enumerate(word_list)}
    n_class = len(word_dict)
    
    
    # Model parameters
    n_step = 2
    n_hidden = 5
    
    
    def make_batch(sentences):
        input_batch = []
        target_batch = []
        for sentence in sentences:
            words = sentence.split()
            input = [word_dict[word] for word in words[:-1]]
            target = word_dict[words[-1]]
    
            input_batch.append(np.eye(n_class)[input])  # np.eye()是单位对角阵
            target_batch.append(np.eye(n_class)[target])
    
        return input_batch, target_batch
    
    
    # Model
    
    # [batch_size, number of steps, number of Vocabulary]
    X = tf.placeholder(tf.float32, [None, n_step, n_class])
    Y = tf.placeholder(tf.float32, [None, n_class])
    
    # [batch_size, n_step * n_class]
    input = tf.reshape(X, shape=[-1, n_step * n_class])
    H = tf.Variable(tf.random_normal([n_step * n_class, n_hidden]))
    d = tf.Variable(tf.random_normal([n_hidden]))
    U = tf.Variable(tf.random_normal([n_hidden, n_class]))
    b = tf.Variable(tf.random_normal([n_class]))
    
    tanh = tf.nn.tanh(d + tf.matmul(input, H))  # [batch_size, n_hidden]
    output = tf.matmul(tanh, U) + b  # [batch_size, n_class]
    
    cost = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits_v2(logits=output, labels=Y))
    optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
    prediction = tf.argmax(output, 1)
    
    # Training
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
    
        input_batch, target_batch = make_batch(sentences)
    
        for epoch in range(5000):
            _, loss = sess.run([optimizer, cost], feed_dict={
                               X: input_batch, Y: target_batch})
            if (epoch + 1) % 1000 == 0:
                print("Epoch:{}".format(epoch + 1), "Cost:{:.4f}".format(loss))
        # Predict
        predict = sess.run([prediction], feed_dict={X: input_batch})
    
        # Test
        input = [sentence.split()[:2] for sentence in sentences]
        print([sentence.split()[:2] for sentence in sentences],
              '---->', [number_dict[n] for n in predict[0]])
    

    8.结果

    ['like', 'love', 'apple', 'coffee', 'hate', 'curry', 'i']
    Epoch:1000 Cost:0.1147
    Epoch:2000 Cost:0.0324
    Epoch:3000 Cost:0.0127
    Epoch:4000 Cost:0.0057
    Epoch:5000 Cost:0.0029
    [['i', 'like'], ['i', 'love'], ['i', 'hate']] ----> ['coffee', 'curry', 'apple']
    [Finished in 7.0s]
    

    9.参考文献

    1.Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model. Journal of Machine Learning Research (JMLR), 3:1137–1155, 2003.
    2.LICSTAR的博客
    3.A Neural Probabilistic Language Model CSDN博客

    相关文章

      网友评论

        本文标题:A Neural Probabilistic Language

        本文链接:https://www.haomeiwen.com/subject/qawayqtx.html