8.1 HA概述
1)所谓HA(high available),即高可用(7*24小时不中断服务)。
2)实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。
3)Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。
4)NameNode主要在以下两个方面影响HDFS集群
NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启
NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用
HDFS HA功能通过配置Active/Standby两个nameNodes实现在集群中对NameNode的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器。
8.2 HDFS-HA工作机制
1)通过双namenode消除单点故障
8.2.1 HDFS-HA****工作要点
1)元数据管理方式需要改变:
内存中各自保存一份元数据;
Edits日志只有Active状态的namenode节点可以做写操作;
两个namenode都可以读取edits;
共享的edits放在一个共享存储中管理(qjournal和NFS两个主流实现);
2)需要一个状态管理功能模块
实现了一个zkfailover,常驻在每一个namenode所在的节点,每一个zkfailover负责监控自己所在namenode节点,利用zk进行状态标识,当需要进行状态切换时,由zkfailover来负责切换,切换时需要防止brain split(脑裂)现象的发生。
3)必须保证两个NameNode之间能够ssh无密码登录。
4)隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务
8.2.2 HDFS-HA****自动故障转移工作机制
自动故障转移为HDFS部署增加了两个新组件:ZooKeeper和ZKFailoverController(ZKFC)进程。ZooKeeper是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。HA的自动故障转移依赖于ZooKeeper的以下功能:
1****)故障检测:集群中的每个NameNode在ZooKeeper中维护了一个持久会话,如果机器崩溃,ZooKeeper中的会话将终止,ZooKeeper通知另一个NameNode需要触发故障转移。
2****)现役****NameNode****选择:ZooKeeper提供了一个简单的机制用于唯一的选择一个节点为active状态。如果目前现役NameNode崩溃,另一个节点可能从ZooKeeper获得特殊的排外锁以表明它应该成为现役NameNode。
ZKFC是自动故障转移中的另一个新组件,是ZooKeeper的客户端,也监视和管理NameNode的状态。每个运行NameNode的主机也运行了一个ZKFC进程,ZKFC负责:
1****)健康监测:ZKFC使用一个健康检查命令定期地ping与之在相同主机的NameNode,只要该NameNode及时地回复健康状态,ZKFC认为该节点是健康的。如果该节点崩溃,冻结或进入不健康状态,健康监测器标识该节点为非健康的。
2****)****ZooKeeper****会话管理:当本地NameNode是健康的,ZKFC保持一个在ZooKeeper中打开的会话。如果本地NameNode处于active状态,ZKFC也保持一个特殊的znode锁,该锁使用了ZooKeeper对短暂节点的支持,如果会话终止,锁节点将自动删除。
3****)基于****ZooKeeper****的选择:如果本地NameNode是健康的,且ZKFC发现没有其它的节点当前持有znode锁,它将为自己获取该锁。如果成功,则它已经赢得了选择,并负责运行故障转移进程以使它的本地NameNode为active。
![](https://img.haomeiwen.com/i20187731/550f0442bbc4dec8.png)
8.4 HDFS-HA集群配置
8.4.1 环境准备
1)修改IP
2)修改主机名及主机名和IP地址的映射
3)关闭防火墙
4)ssh免密登录
5)安装JDK,配置环境变量等
8.4.2 规划集群
bigdata111 bigdata112 bigdata113
NameNode NameNode
JournalNode JournalNode JournalNode
DataNode DataNode DataNode
ZK ZK ZK
ResourceManager
NodeManager NodeManager NodeManager
8.4.3 配置****Zookeeper****集群
0)集群规划
在bigdata111、bigdata112和bigdata113三个节点上部署Zookeeper。
1)解压安装
(1)解压zookeeper安装包到/opt/module/目录下
[itstar@bigdata111 software]$ tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/
(2)在/opt/module/zookeeper-3.4.10/这个目录下创建zkData
mkdir -p zkData
(3)重命名/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg为zoo.cfg
mv zoo_sample.cfg zoo.cfg
2)配置zoo.cfg文件
(1)具体配置
dataDir=/opt/module/zookeeper-3.4.10/zkData
增加如下配置
#######################cluster##########################
server.1=bigdata111:2888:3888
server.2=bigdata112:2888:3888
server.3=bigdata113:2888:3888
(2)配置参数解读
Server.A=B:C:D。
A是一个数字,表示这个是第几号服务器;
B是这个服务器的ip地址;
C是这个服务器与集群中的Leader服务器交换信息的端口;
D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。
集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server。
3)集群操作
(1)在/opt/module/zookeeper-3.4.10/zkData目录下创建一个myid的文件
touch myid
添加myid文件,注意一定要在linux里面创建,在notepad++里面很可能乱码
(2)编辑myid文件
vi myid
在文件中添加与server对应的编号:如2
(3)拷贝配置好的zookeeper到其他机器上
scp -r zookeeper-3.4.10/ <u>root@bigdata112.itstar.com:/opt/app/</u>
scp -r zookeeper-3.4.10/ <u>root@bigdata113.itstar.com:/opt/app/</u>
并分别修改myid文件中内容为3、4
(4)分别启动zookeeper
[root@bigdata111 zookeeper-3.4.10]# bin/zkServer.sh start
[root@bigdata112 zookeeper-3.4.10]# bin/zkServer.sh start
[root@bigdata113 zookeeper-3.4.10]# bin/zkServer.sh start
(5)查看状态
[root@bigdata111 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
[root@bigdata112 zookeeper-3.4.10]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: leader
[root@bigdata113 zookeeper-3.4.5]# bin/zkServer.sh status
JMX enabled by default
Using config: /opt/module/zookeeper-3.4.10/bin/../conf/zoo.cfg
Mode: follower
8.4.4 配置****HDFS-HA****集群
1)官方地址:<u>http://hadoop.apache.org/</u>
2)在opt目录下创建一个ha文件夹
mkdir HA
3)将/opt/app/下的 hadoop-2.8.4拷贝到/opt/ha目录下
cp -r hadoop-2.8.4/ /opt/HA/
4)配置hadoop-env.sh
|
export JAVA_HOME=/opt/module/jdk1.8.0_144
|
5)配置core-site.xml
|
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/HA/hadoop-2.8.4/data</value>
</property>
</configuration>
|
6)配置hdfs-site.xml
|
<configuration>
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>bigdata111:9000</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>bigdata112:9000</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>bigdata111:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>bigdata112:50070</value>
</property>
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://bigdata111:8485;bigdata112:8485;bigdata113:8485/mycluster</value>
</property>
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/HA/hadoop-2.8.4/data/jn</value>
</property>
<property>
<name>dfs.permissions.enable</name>
<value>false</value>
</property>
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!--secondary NameNode的地址,端口号是50090-->
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>bigdata112:50090</value>
</property>
</configuration>
|
7) 拷贝配置好的hadoop环境到其他节点
注意需要scp到其他节点
8.4.5 启动****HDFS-HA****集群
1)在各个JournalNode节点上,输入以下命令启动journalnode服务:
Journalnode主要是用来做数据之间共享的。
sbin/hadoop-daemon.sh start journalnode
2)在[nn1]上,对其进行格式化,并启动:
bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode
3)在[nn2]上,同步nn1的元数据信息:
bin/hdfs namenode -bootstrapStandby
4)启动[nn2]:
sbin/hadoop-daemon.sh start namenode
5)查看web页面显示
![](https://img.haomeiwen.com/i20187731/7f54212709fe0578.png)
![](https://img.haomeiwen.com/i20187731/1749872bbac4ceb6.png)
6)在[nn1]上,启动所有datanode
sbin/hadoop-daemons.sh start datanode
7)查看是否Active
bin/hdfs haadmin -getServiceState nn1
8)将[nn1]切换为Active
切换为Active:bin/hdfs haadmin -transitionToActive nn1
切换为Standby:bin/hdfs haadmin -transitionToStandby nn1
8.4.6 配置****HDFS-HA****自动故障转移
1)具体配置
(1)在hdfs-site.xml中增加
|
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
|
(2)在core-site.xml文件中增加
<property>
<name>ha.zookeeper.quorum</name>
<value>bigdata111:2181,bigdata112:2181,bigdata113:2181</value>
</property>
2)启动
坑:如果是非可视化界面,需要执行这个命令:yum -y install psmisc,不然无法自动切换HA
(1)关闭所有HDFS服务:
sbin/stop-dfs.sh
(2)启动Zookeeper集群:
bin/zkServer.sh start
(3)初始化HA在Zookeeper中状态:
bin/hdfs zkfc -formatZK
(4)启动HDFS服务:
sbin/start-dfs.sh
(5)在各个NameNode节点上启动DFSZK Failover Controller,先在哪台机器启动,哪个机器的NameNode就是Active NameNode
sbin/hadoop-daemon.sh start zkfc
3)验证()
(1)将Active NameNode进程kill
kill -9 namenode的进程id
(2)将Active NameNode机器断开网络
service network stop
8.5 YARN-HA配置
8.5.1 YARN-HA****工作机制
1)官方文档:
<u>http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html</u>
2)YARN-HA工作机制
![](https://img.haomeiwen.com/i20187731/7d121346ef946410.png)
8.5.2 配置****YARN-HA****集群
0)环境准备
(1)修改IP
(2)修改主机名及主机名和IP地址的映射
(3)关闭防火墙
(4)ssh免密登录
(5)安装JDK,配置环境变量等
(6)配置Zookeeper集群
1)规划集群
bigdata111 bigdata112 bigdata113
NameNode NameNode
JournalNode JournalNode JournalNode
DataNode DataNode DataNode
ZK ZK ZK
ResourceManager ResourceManager
NodeManager NodeManager NodeManager
2)具体配置
(1)yarn-site.xml
|
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!--启用resourcemanager ha-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!--声明两台resourcemanager的地址-->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>cluster-yarn1</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>bigdata111</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>bigdata112</value>
</property>
<!--指定zookeeper集群的地址-->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>bigdata111:2181,bigdata112:2181,bigdata113:2181</value>
</property>
<!--启用自动恢复-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!--指定resourcemanager的状态信息存储在zookeeper集群-->
<property>
<name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
</configuration>
|
(2)同步更新其他节点的配置信息
3)启动hdfs(如果已经做过,不需要重复执行)
(1)在各个JournalNode节点上,输入以下命令启动journalnode服务:
sbin/hadoop-daemon.sh start journalnode
(2)在[nn1]上,对其进行格式化,并启动:
bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode
(3)在[nn2]上,同步nn1的元数据信息:
bin/hdfs namenode -bootstrapStandby
(4)启动[nn2]:
sbin/hadoop-daemon.sh start namenode
(5)启动所有datanode
sbin/hadoop-daemons.sh start datanode
(6)将[nn1]切换为Active
bin/hdfs haadmin -transitionToActive nn1
4)启动yarn
(1)在bigdata111中执行:
sbin/start-yarn.sh
(2)在bigdata112中执行:
sbin/yarn-daemon.sh start resourcemanager
(3)查看服务状态
bin/yarn rmadmin -getServiceState rm1
![](https://img.haomeiwen.com/i20187731/9bac3c4bb0b4c6da.png)
网友评论