最近,看到了网上一些关于网络协议和OSI七层协议的一些文章,对网络这块,了解也深刻了一点,所以参考一些文章,总结了下自己对于OSI七层协议的理解。PS:认真看完这篇文章,你肯定会有收获。
OSI七层模型是什么?
OSI七层模型是一个标准,规定了机器(主要是电脑)之间如何通信。OSI模型是一个分层的模型,每一个部分称为一层,每一层扮演固定的角色,互不干扰。
OSI有7层,从下到上分别是:
1、物理层 ( Physical layer ): 硬件,有线及无线。例如网线,中间的物理链接可以是光缆、电缆、双绞线、无线电波。中间传的是电信号,即010101...这些二进制位。
2、数据链路层( Data Link layer ) :数据链路层就是来对电信号来做分组的
3、网络层 (Network layer ):网络层定义了一个IP协议
4、传输层( Transport layer): 建立端口到端口的通信
5、会话层 (Session layer):
6、表示层 (Presentation layer):
7、应用层 (Application layer ) : 应用层功能:规定应用程序的数据格式。例:TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等
如何巧记这7层,这里有一个小技巧
记忆口诀:
All People Seem To Need Data Processing。
从第7层到第一层,从下到上每一个的首字母刚好组成这句话。
在通信主机上完成的功能:应用层,表示层,会话层,传输层
在网络设备上实现的功能:网络层,数据链路层,物理层
image.png
OSI七层模型是一个理论模型,今天的互联网使用的实际模型是TCP/IP模型,而后者不使用OSI的第5层和第6层,因此我们本文不做介绍。
现在,你们想象一个这样的场景:你坐在电脑钱,在浏览器里打开百度这个网站。
虽然你并不知情,但其实你就在使用OSI模型。
大体来说,位于OSI第7层的应用程序(这里是浏览器),与第1-4层(合称“网络层”)对话,以便这4层把机器上的应用程序所要的信息从远端的机器上(此处是百度服务器)传输过来。
1、物理层(Physical layer)
解释:物理传输、硬件、有线及无线。在杭州的你与温州的朋友聊天,你的电脑要上网,物理层体现是什么?是不是一个网线、有个路由器,温州那边的朋友是不是也要网线和路由器。也就是说计算机与计算机之间的通信,必须要有底层物理层方面的连通,就类似于你打电话,中间是不是必须得连电话线。
中间的物理链接可以是光缆、电缆、双绞线、无线电波。中间传的是电信号,即010101...这些二进制位。
底层传输的010010101001...这些二级制位怎么才能让它有意义呢?
人为的分组再适合不过了,8位一组,发送及接收都按照8位一组来划分。接收到8位为一组的话,那么就可以按照这8位数来做运算。如果没有分组,对方接收的计算机根本就不知道从哪一位开始来做计算,也解析不了收到的数据。写过Socket的同学一定知道,就像Socket发送和接收消息一样,要规定一个传输协议,比如规定前面8位数表示要发送数据的长度,后面代表要发送的实际数据,这样接收方就可以先解析收到的前面的8位、在根据长度解析实际的数据。因此要想让底层的电信号有意义,必须要把底层的电信号做分组。而这分组的工作,就是接下来我们要讲的数据链路层的工作。
2、数据链路层(Data Link layer )
我们可以简单的理解为:数据链路层就是来对电信号来做分组的。
一组电信号称之为一个数据包,或者叫做一个“帧”。
- 每一数据帧分成:报头head和数据data两部分
head包含:(固定18个字节)
- 发送者(源地址,6个字节)
- 接收者(目标地址,6个字节)
- 数据类型(6个字节)
data包含:(最短46字节,最长1500字节)
- 数据包的具体内容
这就像写信,发送者的地址(源地址)就是你家的地址,接收者地址(目标地址)就是对方的收信地址,你家的路由器就相当于邮局。其实在计算机通信中的源地址和目标地址指的是mac地址。
Mac地址的由来:
head中包含的源和目标地址由来:Ethernet规定接入Internet的设备都必须具备网卡,发送端的和接收端的地址便是指网卡的地址,即Mac地址。
每块网卡出厂时都被烧录上一个实际上唯一的Mac地址,长度为48位2进制,通常由12位16进制数表示,(前六位是厂商编码,后六位是流水线号)
image.png
有了mac地址以后,计算机就可以通信了。
-
网上看到一个很通俗易懂的列子:
假设一个教室就是一个局域网(隔离的网络),这个教室里面有几台计算机,计算机的通信和人的通信是一个道理,把教室里面的人都比作一个个计算机,假设教室里面的人都是瞎子,其实计算机就是瞎子的,计算机通信基本靠吼,现在我要找教室里面的飞哥要战狼2的片,然后我就吼一声,说我要找飞哥要战狼2的片,战狼2的片就属于我的数据,但是我在发的时候我是不是要标识我是谁,我要找谁,我是谁就是我的mac地址,我要找谁就是飞哥的mac地址,这两个地址做数据包的头部,再加上数据战狼2的片就构成了一个数据帧。
这个数据包封装好以后就往外发,到物理层以后就全部转成二级制,往外发是怎么发的呢?就是靠吼。即“我是Edison,我找飞哥要战狼2的片”。这么吼了一嗓子以后,全屋子的人都能听到,这就是广播。
计算机底层,只要在一个教室里(一个局域网),都是靠广播的方式,吼。
局域网的理解:什么是互联网,互联网就是由一个个局域网组成,局域网内的计算机不管是对内还是对外都是靠吼,这就是数据链路层的工作方式-----广播。
广播出去以后,所有人都听得见,所有人都会拆开这个包,读发送者是谁,接收者是谁,只要接收者不是自己就丢弃掉。对计算机来说,它会看自己的Mac地址,飞哥收到以后,他就会把片发给我,发送回来同样采用广播的方式了,靠吼。同一个教室(同一个局域网)的计算机靠吼来通信,那不同教室的计算机又如何?
比如说局域网1的pc1与局域网2的pc10如何通信?你在教室1(局域网1)吼,教室2(局域网2)的人肯定是听不见的。这就是跨网络进行通信,数据链路层就解决不了这个问题了,这就得靠网络层出面了。
在讲网络层之前,其实基于广播的这种通信就可以实现全世界通信了,你吼一声,如果全世界是一个局域网,全世界的计算机肯定可以听得见,从理论上似乎行得通,如果全世界的计算机都在吼,你想一想,这是不是一个灾难。因此,全世界不能是一个局域网。于是就有了网络层。
3、网络层(Network layer)
网络层定义了一个IP协议,
你想,我是这个教室的一个学生,我想找隔壁教室一个叫老王的学生,我也不认识老王,那怎么办,我吼?老王在另外一个教室肯定是听不到的。找教室的负责人,这个教室的负责人就负责和隔壁教室的负责人说话,说我们教室的有个学生要找你们教室的老王。往外传的东西交给负责人就可以了,内部的话上面已经提到,通过广播的方式,对外的东西广播失效。教室的负责人就是网关,网关即网络关口的意思。
Mac地址是用来标识你这个教室的某个位置,IP地址是用来标识你在哪个教室(哪个局域网)。你要跨网络发包你是不是要知道对方的IP地址,比如你要访问百度,你肯定得知道百度服务器的IP地址。计算机在发包前,会判断你在哪个教室,对方在哪个教室,如果在一个教室,基于mac地址的广播发包就OK了;如果不在一个教室,即跨网络发包,那么就会把你的包交给教室负责人(网关)来转发。Mac地址及IP地址唯一标识了你在互联网中的位置。
数据链路层中会把网络层的数据包封装到数数据链路层的数据位置,然后再添加上自己的包头,再发给物理层,物理层发给网关,网关再发给对方教室的网关,对方教室的网关收到后在那个教室做广播。
现在来看另一个问题,在吼之前怎么知道对方的Mac地址?这就得靠ARP协议。
ARP: Adress Resolution Protocol 地址解析协议,根据IP地址获取物理地址的一个TCP/IP协议。
ARP协议的由来:在你找飞哥要片之前,你的先干一件事,想办法知道飞哥的Mac地址。即你的机器必须先发一个ARP包出去,ARP也是靠广播的方式发,ARP发送广播包的方式如下:
image.png局域网中怎么获取对方的Mac地址:
肯定要知道对方的IP地址,这是最基本的,就像你要访问百度,肯定得知道百度的域名,域名就是百度的IP地址。自己的IP可以轻松获得,自己的Mac也轻松获取,目标Mac为12个F,我们叫广播地址,表达的意思是我想要获取这个目标IP地址172.16.10.11的机器的Mac地址。Mac为12个F代表的是一种功能,这个功能就是获取对方的MAC地址,计算机的Mac永远不可能是12个F。假设是在本教室广播,一嗓子吼出去了,所有人开始解包,只有IP地址是172.16.10.11的这个人才会返回他的Mac地址,其他人全部丢弃。发回来源Mac改成飞哥自己的Mac地址,同时把飞哥的Mac地址放在数据部分。
跨网络怎么获取对方的Mac地址:
通过IP地址区分,计算机运算判断出飞哥不在同一个教室,目标IP就变成了网关的IP了。网关的IP在计算机上配死了,可以轻松获取。
image.png image.png这样网关就会把它的Mac地址返回给你,然后正常发包
image.png网关帮你去找飞哥,但对用户来说,我们根本就感觉不到网关的存在。
4、传输层(Transport layer )
传输层的由来:网络层的ip帮我们区分子网,以太网层的mac帮我们找到主机,然后大家使用的都是应用程序,你的电脑上可能同时开启qq,暴风影音,等多个应用程序,
那么我们通过ip和mac找到了一台特定的主机,如何标识这台主机上的应用程序,答案就是端口,端口即应用程序与网卡关联的编号。
传输层功能:建立端口到端口的通信
补充:端口范围0-65535,0-1023为系统占用端口
网络中的计算机通信无外乎有以下两种情况:
-
要发送的内容多,需要将发送的内容分成多个数据包发送。(TCP协议 丢包后会重传,考虑可靠传输 )
-
要发送的内容少,一个数据包就能发送全部内容。(UDP协议 丢包后不重传,不考虑可靠传输的)
TCP :要传输的内容需要分成多个数据包来传输,分段,编号,流量控制,拥塞避免,可靠传输,客户端和服务端需要建立TCP连接(协商参数:选择性确认,最大报文),通信结束需要释放连接。(例如下载一部1GB电影,访问网页、发邮件,访问FTP上传或下载文件)
UDP 要传输的内容一个数据就能全部发送,不需要分段,不需要流量控制,传输成功与否由应用层判断,客户端与服务器之间不用建立连接,节省服务器资源。(例如实时的语音和视频使用UDP协议,因为它们不允许传输的数据颠倒顺序,还有多播也是使用UDP协议)
7、应用层(Application layer)
应用层由来:用户使用的都是应用程序,均工作于应用层,互联网是开发的,大家都可以开发自己的应用程序,数据多种多样,必须规定好数据的组织形式 。
应用层功能:规定应用程序的数据格式。
例:TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了”应用层”。
参考文章:
https://blog.csdn.net/taotongning/article/details/81352985
https://blog.csdn.net/taotongning/article/details/81450159
https://blog.csdn.net/taotongning/article/details/81390979
https://www.imooc.com/read/54#new_header
da
网友评论