美文网首页
[Paper Reading] Aggregating loca

[Paper Reading] Aggregating loca

作者: Limityoung | 来源:发表于2020-10-19 11:39 被阅读0次

    Paper Site: https://lear.inrialpes.fr/pubs/2010/JDSP10/jegou_compactimagerepresentation.pdf

    Problem Definition

    To jointly solve the three constraints: the accuracy of the search, the efficiency and the memory usage of the representation in the image search on a very large scale.

    Contribution and Discussion

    1. Propose a simple yet efficient way of aggregating local image descriptors into a vector of limited dimension, which can be viewed as a simplification of the Fisher kernel representation.

    2. Jointly optimize the dimension reduction and the indexing algorithm, so that it best preserves the quality of vector comparison.

    3. Significantly outperforms the state of the art: the search accuracy is comparable to the bag-of-features approach for an image representation that fits in 20 bytes. Searching a 10 million image dataset takes about 50ms.

    Method

    1. From vectors to codes: optimize 1) a projection that reduces the dimensionality of the vector and 2) a quantization used to index the resulting vectors.

    2. Dimensionality reduction in approximate nearest neighbor search. Use principal component analysis (PCA) for dimensionality reduction.

    3. Allocating different numbers of bits to the different components to balance the components' variance.

    相关文章

      网友评论

          本文标题:[Paper Reading] Aggregating loca

          本文链接:https://www.haomeiwen.com/subject/qgkkmktx.html