1.Unsafe综述
作用: Unsafe是个后门类,封装了一些类似指针的操作,提供了一些可以直接操控内存和线程的底层操作
使用: Unsafe被JDK广泛用于nio包和并发包中,但是不建议在生产环境使用,风险太大
不安全: 不安全指的是指针的操作不安全(Java因此才把指针去掉),若指针指错位置或计算指针偏移量出错,结果不可想象,比如说覆盖了别人的内存,那可能就GG思密达了...
- Unsafe类是在sun.misc包下,不属于Java标准,android中也不是标准支持,可以通过使用java库的方式+反射调用
- 另外可以用LockSupport类+Atomic原子类操作来代替Unsafe类的功能,其时CAS操作的基石;
- Unsafe类使Java拥有了像C语言的指针一样操作内存空间的能力,一旦能够直接操作内存,因此操作时,需要对象地址,对象成员变量相对地址偏移量,旧值,要修改后的值;
两个方面的用途
- 线程的停止、唤醒
- 基础数据、对象的写,具有原子性
2.Unsafe的数据结构
2.1 类定义
public final class Unsafe
2.2 构造器
//私有构造器 --单例模式
private Unsafe() {}
2.3 重要变量
private static final Unsafe theUnsafe;
public static final int INVALID_FIELD_OFFSET = -1;
public static final int ARRAY_BOOLEAN_BASE_OFFSET;
public static final int ARRAY_BYTE_BASE_OFFSET;
public static final int ARRAY_SHORT_BASE_OFFSET;
public static final int ARRAY_CHAR_BASE_OFFSET;
public static final int ARRAY_INT_BASE_OFFSET;
public static final int ARRAY_LONG_BASE_OFFSET;
public static final int ARRAY_FLOAT_BASE_OFFSET;
public static final int ARRAY_DOUBLE_BASE_OFFSET;
public static final int ARRAY_OBJECT_BASE_OFFSET;
public static final int ARRAY_BOOLEAN_INDEX_SCALE;
public static final int ARRAY_BYTE_INDEX_SCALE;
public static final int ARRAY_SHORT_INDEX_SCALE;
public static final int ARRAY_CHAR_INDEX_SCALE;
public static final int ARRAY_INT_INDEX_SCALE;
public static final int ARRAY_LONG_INDEX_SCALE;
public static final int ARRAY_FLOAT_INDEX_SCALE;
public static final int ARRAY_DOUBLE_INDEX_SCALE;
public static final int ARRAY_OBJECT_INDEX_SCALE;
public static final int ADDRESS_SIZE;
private static native void registerNatives();
static {
registerNatives();
Reflection.registerMethodsToFilter(Unsafe.class, new String[]{"getUnsafe"});
theUnsafe = new Unsafe();//单例模式 -饿汉式
ARRAY_BOOLEAN_BASE_OFFSET = theUnsafe.arrayBaseOffset(boolean[].class);
ARRAY_BYTE_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class);
ARRAY_SHORT_BASE_OFFSET = theUnsafe.arrayBaseOffset(short[].class);
ARRAY_CHAR_BASE_OFFSET = theUnsafe.arrayBaseOffset(char[].class);
ARRAY_INT_BASE_OFFSET = theUnsafe.arrayBaseOffset(int[].class);
ARRAY_LONG_BASE_OFFSET = theUnsafe.arrayBaseOffset(long[].class);
ARRAY_FLOAT_BASE_OFFSET = theUnsafe.arrayBaseOffset(float[].class);
ARRAY_DOUBLE_BASE_OFFSET = theUnsafe.arrayBaseOffset(double[].class);
ARRAY_OBJECT_BASE_OFFSET = theUnsafe.arrayBaseOffset(Object[].class);
ARRAY_BOOLEAN_INDEX_SCALE = theUnsafe.arrayIndexScale(boolean[].class);
ARRAY_BYTE_INDEX_SCALE = theUnsafe.arrayIndexScale(byte[].class);
ARRAY_SHORT_INDEX_SCALE = theUnsafe.arrayIndexScale(short[].class);
ARRAY_CHAR_INDEX_SCALE = theUnsafe.arrayIndexScale(char[].class);
ARRAY_INT_INDEX_SCALE = theUnsafe.arrayIndexScale(int[].class);
ARRAY_LONG_INDEX_SCALE = theUnsafe.arrayIndexScale(long[].class);
ARRAY_FLOAT_INDEX_SCALE = theUnsafe.arrayIndexScale(float[].class);
ARRAY_DOUBLE_INDEX_SCALE = theUnsafe.arrayIndexScale(double[].class);
ARRAY_OBJECT_INDEX_SCALE = theUnsafe.arrayIndexScale(Object[].class);
ADDRESS_SIZE = theUnsafe.addressSize();
}
3.Unsafe重要方法
//获得给定对象内存偏移量的int值
public native int getInt(Object var1, long var2);
//设置给定对象内存偏移量的int值
public native void putInt(Object var1, long var2, int var4);
public native Object getObject(Object var1, long var2);
public native void putObject(Object var1, long var2, Object var4);
//....还有Boolean、Byte、Char、Short、Long、Float、Double的get\set....
//内存分配、释放
//分配内存
public native long allocateMemory(long var1);
//扩充内存
public native long reallocateMemory(long var1, long var3);
public native void setMemory(Object var1, long var2, long var4, byte var6);
public void setMemory(long var1, long var3, byte var5) {
this.setMemory((Object)null, var1, var3, var5);
}
//拷贝内存
public native void copyMemory(Object var1, long var2, Object var4, long var5, long var7);
public void copyMemory(long var1, long var3, long var5) {
this.copyMemory((Object)null, var1, (Object)null, var3, var5);
}
//释放内存
public native void freeMemory(long var1);
//获取字段在对象中的内存偏移量
public native long staticFieldOffset(Field var1);
public native long objectFieldOffset(Field var1);
public native Object staticFieldBase(Field var1);
public native void ensureClassInitialized(Class<?> var1);
//数组元素定位
//arrayBaseOffset 和 arrayIndexScale 搭配使用可以定位数组中每个元素在内存中的位置
//获取数组第一个元素的偏移地址
public native int arrayBaseOffset(Class<?> var1);
//获取数组的转换因子,也就是数组中元素的增量地址
public native int arrayIndexScale(Class<?> var1);
public native int addressSize();
public native int pageSize();
//类定义
public native Class<?> defineClass(String var1, byte[] var2, int var3, int var4, ClassLoader var5, ProtectionDomain var6);
public native Class<?> defineClass(String var1, byte[] var2, int var3, int var4);
public native Class<?> defineAnonymousClass(Class<?> var1, byte[] var2, Object[] var3);
//创建实例
public native Object allocateInstance(Class<?> var1) throws InstantiationException;
//Synchronized同步块的指令实现 1.8版的全部是@Deprecated
public native void monitorEnter(Object var1);
public native void monitorExit(Object var1);
public native boolean tryMonitorEnter(Object var1);
//异常抛出
public native void throwException(Throwable var1);
//CAS操作
/**
* 比较obj的offset处内存位置中的值和期望的值,如果相同则更新,此更新是不可中断的
* @param obj 需要更新的对象
* @param offset obj中整型field的偏移量
* @param expect 希望field中存在的值
* @param update 如果期望值expect与field的当前值相同,设置filed的值为这个新值
* @return 如果field的值被更改返回true
*/
public final native boolean compareAndSwapObject(Object obj, long offset, Object expect, Object update);
public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);
public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);
//获取给定对象的指定类型值,支持volatile load语义
public native Object getObjectVolatile(Object var1, long var2);
public native void putObjectVolatile(Object var1, long var2, Object var4);
public native int getIntVolatile(Object var1, long var2);
//设置给定对象的int值,支持volatile load语义
public native void putIntVolatile(Object var1, long var2, int var4);
//....还有Boolean、Byte、Char、Short、Long、Float、Double的volatile级别的get\put....
public native void putDoubleVolatile(Object var1, long var2, double var4);
public native void putOrderedObject(Object var1, long var2, Object var4);
public native void putOrderedInt(Object var1, long var2, int var4);
public native void putOrderedLong(Object var1, long var2, long var4);
//LockSupport类的原语支持-挂起和唤醒某个线程
public native void unpark(Object var1);
public native void park(boolean var1, long var2);
public native int getLoadAverage(double[] var1, int var2);
//提供线程安全的add和set操作
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
}
public final int getAndSetInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var4));
return var5;
}
//...还有Long和Object的线程安全的add和set操作...
//栅栏支持
public native void loadFence();
public native void storeFence();
public native void fullFence();
4.Unsafe的使用
4.1 UnSafe的使用限制
4.1.1 私有构造器
private Unsafe() {}
4.1.2 禁用的工厂方法
@CallerSensitive
public static Unsafe getUnsafe() {
Class var0 = Reflection.getCallerClass();
//该方法用于判断调用者的类加载器是否是系统核心加载器(即Bootstrap加载器)
if(!VM.isSystemDomainLoader(var0.getClassLoader())) {
throw new SecurityException("Unsafe");
} else {
return theUnsafe;
}
}
我们先显性调用该工厂方法查看一下调用结果
package concurrent;
import sun.misc.Unsafe;
public class UnsafeDemo {
public static void main(String[] args) {
Unsafe.getUnsafe();
}
}
-------------------
//输出:
Exception in thread "main" java.lang.SecurityException: Unsafe
at sun.misc.Unsafe.getUnsafe(Unsafe.java:90)
at concurrent.UnsafeDemo.main(UnsafeDemo.java:7)
//分析:可以发现直接调用的话会直接抛出安全异常,原因是类加载器是AppClassLoader而并非是BootstrapLoader
4.2 Unsafe的反射获取
/**
* 我们可以通过反射机制获取Unsafe 的一个实例
*/
public static Unsafe getUnsafe(){
try {
//通过反射获取Unsafe的theUnsafe变量,即Unsafe实例对象
Field f = Unsafe.class.getDeclaredField("theUnsafe");
f.setAccessible(true);
//注意field是static属性
//参见:private static final Unsafe theUnsafe;
return (Unsafe) f.get(null);
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
3 AtomicInteger的代码
这时AtomicInteger的代码:首先静态获取变量相对类的偏移量,在对象处理时,使用当前对象地址+偏移量,推算出当前变量地址
private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
private static final long VALUE;
static {
try {
VALUE = U.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));
} catch (ReflectiveOperationException e) {
throw new Error(e);
}
}
private volatile int value;
public final boolean compareAndSet(int expect, int update) {
return U.compareAndSwapInt(this, VALUE, expect, update);
}
代码解读:
- VALUE 为value变量在AtmicInteger实例地址的相对偏移量,这个相对偏移量对于类,在类加载后就是一定的
- U提供了设置方法,但是为了保证读写操作的原子性,我们一般选择使用volatile+和旧值比对然后替换的方法来达到原子性
- 和旧值比对,如果一致,替换才能成功,否则不能成功
原子性的原理:
- 读的结果为最新
- 写的时候,旧值符合预期才能成功,如果变动了则旧值旧变化了,也就不能写成功了 存在问题ABA问题,也就是旧值在一个线程变为A,让后在另外一个线程变为B,某个线程为A;你当时获取为A,那么也是可以修改为你想要的了;这个问题是添加时间戳来记录旧值并比对
网友评论