美文网首页
基于 AOP 抽离方法的重复代码

基于 AOP 抽离方法的重复代码

作者: MiZhou | 来源:发表于2019-10-26 00:43 被阅读0次

背景

今天师兄和我说,“之叶,你设计一个方案,把目前业务方法中和业务无关的逻辑都抽离出来,让每个方法只关心自己的业务逻辑”。我会心一笑 👇(因为我们早应该做这件事情了)

邪魅一笑

现有的业务方法

之前代码里每个业务方法几乎都是长这样:

public class XxxServiceImpl implements XxxService {

    private final Logger logger = LoggerFactory.getLogger(this.getClass());

    @Override
    public XxxResponse<...> queryXxx(XxxRequest request) {
        // 记录方法开始时间
        long startTime = System.currentTimeMillis();
        // 构造响应
        XxxResponse<PagedData> response = new XxxResponse();
        // 设置调用机器
        response.setHost(ServiceUtils.getHost());
        // 设置方法开始执行时间
        response.setSysTime(startTime);

        try {
            // 业务逻辑代码
            ......

            response.setData(pagedData);
        } catch(Throwable e) {
            // 抛出异常时候执行
            logger.error(...);
            response.failBizInfo(ServiceBizError.UNKNOWN_ERROR);
        } finally {
            // 设置方法耗时
            long costTime = System.currentTimeMillis() - startTime;
            response.setCostTime(costTime);
            // 记录调用信息
            logger.info(...);
        }
        // 返回响应
        return response;
    }
  
    // 后面还有若干个类似的业务方法
    ......
}

很容易可以看出,记录方法开始时间捕获异常并处理打印错误日志记录方法耗时 这些都是和业务没有关系的,业务方法关心的,只应该是 业务逻辑代码 才对。一两个方法这个样子看起来也还好,但是目前项目里面已经有十几个这种样子的方法了,而且以后还会更多,重复代码对我们简直不能忍 —— 是的,我也早就看这些业务方法不顺眼了,安排!

必须安排

设计方案

AOP 登场

大家都听过 Spring 有两大神器 —— IoC 和 AOP —— 了解 AOP 的人,都知道 AOP 是 Aspect Oriented Programming,即面向切面编程:通过预编译方式(CGLib)或者运行期动态代理(JDK Proxy)来实现程序功能代理的技术。此时的情况,就完美匹配 AOP 的应用场景。我们可以定义一个切点(PointCut,也叫连接点),然后对和 切点匹配的方法,织入(Weaving)切面(Aspect),进行增强(Advice)处理:即在方法 调用前调用后 或者 抛出异常时,进行额外的处理。

实现方案

搭建示例项目

为了方便示例,首先我们建立一个简单的 SpringBoot 项目,并添加示例的 Service 和 Controller:

创建 SpringBoot 项目

加入一个 DemoService:

public interface DemoService {

    /**
     * 除法运算
     *
     * @param request 除法运算请求
     * @return 除法运算结果
     */
    DivisionResponse divide(DivisionRequest request);

}

DemoService 的实现:

@Service
public class DemoServiceImpl implements DemoService {

    private final Logger logger = LoggerFactory.getLogger(this.getClass());

    @Override
    public DivisionResponse divide(DivisionRequest request) {
        long startTime = System.currentTimeMillis();

        DivisionResponse response = new DivisionResponse();
        // 设置方法调用的时间
        response.setSysTime(startTime);
        // 设置方法调用的机器
        response.setHost(getHost());

        // 请求参数
        int dividend = request.getDividend();
        int divisor = request.getDivisor();

        try {
            // 模拟检查业务参数
            // ...检查业务参数...
            TimeUnit.MILLISECONDS.sleep(300);

            // 模拟执行业务
            int result = dividend / divisor;

            // 设置业务执行结果
            response.setData(result);
            // 调用正常
            response.setSuccess(true);
        } catch (Throwable e) {
            // 调用出错
            response.setSuccess(false);
            // 记录执行错误
            logger.error("DemoServiceImpl.divide 执行出错", e);
            response.setPrompt(e.getMessage());
        } finally {
            // 设置方法调用耗时
            response.setCostTime(System.currentTimeMillis() - startTime);
            // 记录方法调用信息
            logger.info("DemoServiceImpl.divide request={}, response={}", request, response);
        }

        return response;
    }

    /**
     * 模拟获得服务器名称
     */
    private String getHost() {
        return UUID.randomUUID().toString().substring(0, 8);
    }
}

再加入一个 DemoController:

@RestController
public class DemoController {

    @Resource
    private DemoService demoService;

    @GetMapping("division.do")
    public DivisionResponse doDivision(@RequestParam int a,
                                       @RequestParam int b) {
        // 构建请求
        DivisionRequest request = new DivisionRequest();
        request.setDividend(a);
        request.setDivisor(b);

        // 执行
        return demoService.divide(request);
    }
}

启动应用,看一下目前调用业务方法时的情况:

  1. 调用正常情况(a=2,b=1)

    正常情况
  2. 调用出错情况(a=2,b=0)

    错误情况

编写切面

现在的 Java Web 应用,使用注解来进行配置和做 AOP 已经是主流 —— 因为相比 XML,注解更简单而且更好用。所以我们先定义一个 @ServiceMethodAspectAnno

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface ServiceMethodAspectAnno {
    
}

这个注解的目标类型是 方法,并且在 运行期 保留。然后我们就可以来定义切面了,这个切面会拦截所有被 @ServiceMethodAspectAnno 注解的方法,并做织入处理:

@Component
@Aspect  // @Aspect 告诉 Spring 这是一个切面
public class ServiceMethodAspect {

    /**
     * 方法连接点(处理被 @ServiceMethodAspectAnno 注解的方法)
     */
    @Pointcut("@annotation(org.mizhou.aop.aspect.anno.ServiceMethodAspectAnno)")
    public void methodPointcut() { }

    /**
     * 切入被 @ServiceMethodAspectAnno 注解的方法
     *
     * @param point 连接点
     *
     * @return 方法返回值
     * @throws Throwable 可能抛出的异常
     */
    @Around("methodPointcut()")
    public Object doAround(ProceedingJoinPoint point) throws Throwable {
        // 方法不匹配,即不是要处理的业务方法
        if (!isMatched(point)) {
            // 方法不匹配时的执行动作
            onMismatch(point);
            // 直接执行该方法并返回结果
            return point.proceed();
        }
        
        // 方法返回值
        Object result;
        // 是否抛出异常
        boolean thrown = false;
        // 记下开始执行的时间
        long startTime = System.currentTimeMillis();
        try {
            // 执行目标方法
            result = point.proceed();
        } catch (Throwable e) {
            // 记录抛出了异常
            thrown = true;
            // 处理异常
            onThrow(point, e);
            // 抛出异常的情况下,则构造一个返回值的实例,用于业务服务方法的返回
            result = getOnThrown(point, e);
        }

        // 切面结束
        onComplete(point, startTime, thrown, result);

        return result;
    }

    /**
     * 是否是匹配的方法<br/>
     * 限定方法类型入参匹配 BaseRequest,返回值匹配 BaseResponse
     * 
     * @param point 方法的连接点
     * @return 是可以处理的方法返回 true,否则返回 false
     */
    private boolean isMatched(ProceedingJoinPoint point) {
        MethodSignature signature = (MethodSignature) point.getSignature();
        Class returnType = signature.getReturnType();

        // returnType 是 BaseResponse 或其子类型
        if (BaseResponse.class.isAssignableFrom(returnType)) {
            Class[] parameterTypes = signature.getParameterTypes();

            // 参数必须是 BaseRequest 或其子类型
            return parameterTypes.length == 1
                    && BaseRequest.class.isAssignableFrom(parameterTypes[0]);
        }

        return false;
    }

    /**
     * 如果是不要处理的方法,执行的动作
     *
     * @param point 方法的连接点
     */
    private void onMismatch(ProceedingJoinPoint point) {
        Logger logger = getLogger(point);
        String logTag = getLogTag(point);

        logger.warn("{} 不是 @{} 可以处理的方法", logTag, ServiceMethodAspectAnno.class.getSimpleName());
    }
    
    /**
     * 抛出异常时,执行的动作
     *
     * @param point 方法的连接点
     * @param e 抛出的异常
     */
    private void onThrow(ProceedingJoinPoint point, Throwable e) {
        Logger logger = getLogger(point);
        String logTag = getLogTag(point);

        logger.error("{} 调用出错", logTag, e);
    }

    /**
     * 构建抛出异常时的返回值
     *
     * @param point 方法的连接点
     * @param e 抛出的异常
     * @return 抛出异常时的返回值
     */
    @SuppressWarnings("unchecked")
    private BaseResponse getOnThrown(ProceedingJoinPoint point, Throwable e) throws Exception {
        MethodSignature signature = (MethodSignature) point.getSignature();
        Class<? extends BaseResponse> returnType = signature.getReturnType();

        BaseResponse response = returnType.newInstance();
        response.setPrompt(e.getMessage());
        response.setSuccess(false);

        return response;
    }

    /**
     * 切面完成时,执行的动作
     *
     * @param point 方法的连接点
     * @param startTime 执行的开始时间
     * @param thrown 是否抛出异常
     * @param result 执行获得的结果
     */
    private void onComplete(ProceedingJoinPoint point, long startTime, boolean thrown, Object result) {
        BaseResponse response = (BaseResponse) result;

        // 设置方法调用的时间
        response.setSysTime(startTime);
        // 设置方法调用的机器
        response.setHost(getHost());
        // 设置方法调用耗时
        response.setCostTime(System.currentTimeMillis() - startTime);

        Logger logger = getLogger(point);
        // point.getArgs() 获得方法调用入参
        Object request = point.getArgs()[0];
        // 记录方法调用信息
        logger.info("{}, request={}, response={}", getLogTag(point), request, response);
    }

    /**
     * 模拟获得服务器名称
     */
    private String getHost() {
        return UUID.randomUUID().toString().substring(0, 8);
    }
    
    /**
     * 获得被代理对象的 Logger
     * 
     * @param point 连接点
     * @return 被代理对象的 Logger
     */
    private Logger getLogger(ProceedingJoinPoint point) {
        // 获得被代理对象
        Object target = point.getTarget();
        return LoggerFactory.getLogger(target.getClass());
    }

    /**
     * LogTag = 类名.方法名
     *
     * @param point 连接点
     * @return 目标类名.执行方法名
     */
    private String getLogTag(ProceedingJoinPoint point) {
        Object target = point.getTarget();
        String className = target.getClass().getSimpleName();

        MethodSignature signature = (MethodSignature) point.getSignature();
        String methodName = signature.getName();

        return className + "." + methodName;
    }
}

最后我们就可以简化我们的业务方法了:

@ServiceMethodAspectAnno
public DivisionResponse divide(DivisionRequest request) throws Exception {
    DivisionResponse response = new DivisionResponse();

    // 请求参数
    int dividend = request.getDividend();
    int divisor = request.getDivisor();

    // 模拟检查业务参数
    // ...检查业务参数...
    TimeUnit.MILLISECONDS.sleep(300);

    // 模拟执行业务
    int result = dividend / divisor;

    // 设置业务执行结果
    response.setData(result);

    return response;
}

可以看到,目前业务方法只保留了业务相关的逻辑,并且方法上使用了 @ServiceMethodAspectAnno 进行注解。原来的 记录方法开始时间捕获异常并处理打印错误日志记录方法耗时 等功能,都被放到了切面当中。

验证切面

现在来验证下此时切面是否可以按预期工作。先加入一个新的 Service 以及其实现,用于验证切面ServiceMethodAspect 是否能够正确筛选出要处理的方法。

NumberService.java

public interface NumberService {

    /**
     * 除法运算
     *
     * @param dividend 被除数
     * @param divisor 除数
     * @return 商
     * @throws Exception 可能产生的异常(切面会捕获)
     */
    int divide(int dividend, int divisor) throws Exception;

}

NumberServiceImpl.java

@Service
public class NumberServiceImpl implements NumberService {

    @Override
      @ServiceMethodAspectAnno // 测试切面能够筛选方法
    public int divide(int dividend, int divisor) throws Exception {
        // 模拟检查业务参数
        // ...检查业务参数...
        TimeUnit.MILLISECONDS.sleep(300);

        // 模拟执行业务
        int result = dividend / divisor;

        return result;
    }

}

因为我们限定了可以被织入的方法必须参数为 BaseRequest,且返回值为 BaseResponse —— 显然 NumberService.divide 因为返回的是 int 不满足这一点。

DemoController 中再增加一个处理请求的方法:

@RestController
public class DemoController {
    
    ......
      
    @Resource
    private NumberService numberService;

    @GetMapping("another.do")
    public Integer doAnotherDivision(@RequestParam int a,
                                     @RequestParam int b) throws Exception {
        return numberService.divide(a, b);
    }

}

重启 SpringBoot 应用:

调用正常时(http://localhost:8080/division.do?a=2&b=1):

正常调用

调用出错时(http://localhost:8080/division.do?a=2&b=0):

调用出错

测试与注解不匹配的方法(http://localhost:8080/another.do?a=2&b=1):

错误匹配

满意~ 这下再加入新的业务方法,就不用再在每个方法中写那些与业务无关的功能代码了,直接一个注解搞定~

满意

扩展方案

问题

本来开开心心可以收工了,也不知道是谁突然在我脑子里发出了一个声音:如果下次其他方面的业务,入参不是 BaseRequest,返回值不是 BaseResponse,或者要在 onThrow 时记录不同的日志 —— 那么使用上面的方案,是不是要编写一个新的切面?

大脑突然一片空白

也是, isMatchedonMismatchonThrowonComplete 这些方法,是每个切面都会有的。并且对于不同的业务,可能会有不同的实现,所以应该由一个更加通用的方案,方便将来进行扩展。

思考

我们一般用的注解,像下面这样子的:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)

都是可以指定参数的。那么我们不也可以在 @ServiceMethodAspectAnno 中,指定一个 处理类,专门用来处理一种类型的业务方法吗?灵感突现:

  1. 可以将 isMatchedonMismatchonThrowgetOnThrowonComplete 这些方法,放到一个方法切面处理器接口中
  2. 然后不同业务方法的切面处理器,都去实现这个接口,针对自己的业务场景实现处理器的每个方法
  3. 提供一些方法的默认实现,例如 onMismatchonThrow,这两个方法一般都是记录下相应的日志

实现

首先我们定义方法切面处理器的接口 MethodAspectProcessor<R>

/**
 * 方法切面处理器
 */
public interface MethodAspectProcessor<R> {

    /**
     * 是否是要处理的方法
     *
     * @param point 方法的连接点
     * @return 是要处理的方法返回 true,否则返回 false
     */
    boolean isMatched(ProceedingJoinPoint point);

    /**
     * 如果是不要处理的方法,执行的动作
     *
     * @param point 方法的连接点
     */
    default void onMismatch(ProceedingJoinPoint point) {

    }

    // 下面的方法,只在 isMatched 返回 true 时有效

    /**
     * 执行之前的动作<br>
     *
     * @param point 方法的连接点
     * @return 返回 true 则表示继续向下执行;返回 false 则表示禁止调用目标方法,
     * 方法切面处理会此时会先调用 getOnForbid 方法获得被禁止执行时的返回值,然后调用 onComplete 方法结束切面
     */
    default boolean onBefore(ProceedingJoinPoint point) {
        return true;
    }

    /**
     * 禁止调用目标方法时(onBefore 返回 false 时),执行该方法构建返回值
     *
     * @param point 方法的连接点
     * @return 禁止调用目标方法时的返回值
     */
    default R getOnForbid(ProceedingJoinPoint point) {
        return null;
    }

    /**
     * 抛出异常时,执行的动作
     *
     * @param point 方法的连接点
     * @param e     抛出的异常
     */
    void onThrow(ProceedingJoinPoint point, Throwable e);

    /**
     * 构建抛出异常时的返回值
     *
     * @param point 方法的连接点
     * @param e     抛出的异常
     * @return 抛出异常时的返回值
     */
    R getOnThrow(ProceedingJoinPoint point, Throwable e);

    /**
     * 切面完成时,执行的动作
     *
     * @param point     方法的连接点
     * @param startTime 执行的开始时间
     * @param forbidden 目标方法是否被禁止执行
     * @param thrown    目标方法执行时是否抛出异常
     * @param result    执行获得的结果
     */
    default void onComplete(ProceedingJoinPoint point, long startTime, boolean forbidden, boolean thrown, R result) {

    }

}

接着我们改造下 @ServiceMethodAspectAnno,因为我们现在应该是在做一个通用的方法处理器了,所以先给它改名叫 @MethodAspectAnno,然后加入表示方法切面处理器的字段:

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface MethodAspectAnno {
    Class<? extends MethodAspectProcessor> value();
}

然后提供一个 MethodAspectProcessor 抽象类 AbstractMethodAspectProcessor<R>,包括了 onMismatchonThrow 的默认实现:

/**
 * 提供默认的两个功能:<br/>
 * (1)方法不匹配时记录日志<br/>
 * (2)目标方法抛出异常时记录日志
 */
public abstract class AbstractMethodAspectProcessor<R> implements MethodAspectProcessor<R> {

    @Override
    public void onMismatch(ProceedingJoinPoint point) {
        Logger logger = getLogger(point);
        String logTag = getLogTag(point);

        // 获得方法签名
        MethodSignature signature = (MethodSignature) point.getSignature();
        // 获得方法
        Method method = signature.getMethod();
        // 获得方法的 @MethodAspectAnno 注解
        MethodAspectAnno anno = method.getAnnotation(MethodAspectAnno.class);
        // 获得方法切面处理器的 Class
        Class<? extends MethodAspectProcessor> processorType = anno.value();

        String processorName = processorType.getSimpleName();

        // 如果是接口或者抽象类
        if (processorType.isInterface() || Modifier.isAbstract(processorType.getModifiers())) {
            logger.warn("{} 需要指定具体的切面处理器,因为 {} 是接口或者抽象类", logTag, processorName);
            return;
        }

        logger.warn("{} 不是 {} 可以处理的方法,或者 {} 在 Spring 容器中不存在", logTag, processorName, processorName);
    }

    @Override
    public void onThrow(ProceedingJoinPoint point, Throwable e) {
        Logger logger = getLogger(point);
        String logTag = getLogTag(point);

        logger.error("{} 执行时出错", logTag, e);
    }

    /**
     * 获得被代理类的 Logger
     *
     * @param point 连接点
     * @return 被代理类的 Logger
     */
    protected Logger getLogger(ProceedingJoinPoint point) {
        Object target = point.getTarget();

        return LoggerFactory.getLogger(target.getClass());
    }

    /**
     * LogTag = 类名.方法名
     *
     * @param point 连接点
     * @return 目标类名.执行方法名
     */
    protected String getLogTag(ProceedingJoinPoint point) {
        Object target = point.getTarget();
        String className = target.getClass().getSimpleName();

        MethodSignature signature = (MethodSignature) point.getSignature();
        String methodName = signature.getName();

        return className + "." + methodName;
    }
}

再提供一个方法不匹配时的实现 MismatchMethodAspectProcessor<R>,作为接口的默认实现:

/**
 * 方法不匹配时的方法切面处理器<br/>
 * isMatched 方法返回 false,即不会对任何方法做处理<br/>
 * 方法执行之前,会调用 onMismatch 方法,该方法在 AbstractMethodAspectProcessor 提供默认实现
 */
@Component
public class MismatchMethodAspectProcessor<R> extends AbstractMethodAspectProcessor<R> {

    @Override
    public boolean isMatched(ProceedingJoinPoint point) {
        return false;
    }

    @Override
    public R getOnThrow(ProceedingJoinPoint point, Throwable e) {
        // 不会被调用
        return null;
    }
}

此时我们再定义 DemoService 中方法的专用方法切面处理器 ServiceMethodProcessor,把之前方案中的代码拿过来就行:

/**
 * 业务方法切面处理器
 */
@Component
public class ServiceMethodProcessor extends AbstractMethodAspectProcessor<BaseResponse> {

    /**
     * 是否是要处理的方法<br/>
     * 限定方法类型入参匹配 BaseRequest,返回值匹配 BaseResponse
     *
     * @param point 方法的连接点
     * @return 是要处理的方法返回 true,否则返回 false
     */
    @Override
    public boolean isMatched(ProceedingJoinPoint point) {
        MethodSignature signature = (MethodSignature) point.getSignature();
        Class returnType = signature.getReturnType();

        // returnType 是 BaseResponse 或其子类型
        if (BaseResponse.class.isAssignableFrom(returnType)) {
            Class[] parameterTypes = signature.getParameterTypes();

            // 参数必须是 BaseRequest 或其子类型
            return parameterTypes.length == 1
                    && BaseRequest.class.isAssignableFrom(parameterTypes[0]);
        }

        return false;
    }

    /**
     * 构建抛出异常时的返回值<br/>
     *
     * @param point 方法的连接点
     * @param e 抛出的异常
     * @return 抛出异常时的返回值
     */
    @Override
    @SuppressWarnings("unchecked")
    public BaseResponse getOnThrow(ProceedingJoinPoint point, Throwable e) {
        MethodSignature signature = (MethodSignature) point.getSignature();
        Class<? extends BaseResponse> returnType = signature.getReturnType();

        // 构造抛出异常时的返回值
        BaseResponse response = newInstance(returnType);

        response.setPrompt(e.getMessage());
        response.setSuccess(false);

        return response;
    }

    /**
     * 切面完成时,执行的动作
     *
     * @param point 方法的连接点
     * @param startTime 执行的开始时间
     * @param result 执行获得的结果
     */
    @Override
    public void onComplete(ProceedingJoinPoint point, long startTime, boolean forbidden, boolean thrown, BaseResponse result) {
        // 设置方法调用的时间
        result.setSysTime(startTime);
        // 设置方法调用的机器
        result.setHost(getHost());
        // 设置方法调用耗时
        result.setCostTime(System.currentTimeMillis() - startTime);

        Logger logger = getLogger(point);
        // point.getArgs() 获得方法调用入参
        Object request = point.getArgs()[0];
        // 记录方法调用信息
        logger.info("{}, request={}, response={}", getLogTag(point), request, result);
    }

    private BaseResponse newInstance(Class<? extends BaseResponse> type) {
        try {
            return type.newInstance();
        } catch (InstantiationException | IllegalAccessException e) {
            return new CommonResponse();
        }
    }

    /**
     * 模拟获得服务器名称
     */
    private String getHost() {
        return UUID.randomUUID().toString().substring(0, 8);
    }

}

我们还需要一个方法,来通过注解获取 和被注解方法匹配的 方法切面处理器,在 MethodAspectProcessor 加入一个静态方法:

/**
 * 通过注解获取 和被注解方法匹配的 切面处理器
 *
 * @param anno 注解
 * @return 匹配的切面处理器
 * @throws Exception 反射创建切面处理器时的异常
 */
static MethodAspectProcessor from(MethodAspectAnno anno) throws Exception {
    Class<? extends MethodAspectProcessor> processorType = anno.value();

    // 如果指定的是接口或者抽象类(即使用方非要搞事情)
    if (processorType.isInterface() || Modifier.isAbstract(processorType.getModifiers())) {
        processorType = MismatchMethodAspectProcessor.class;
    }

    return processorType.newInstance();
}

修改下之前的方法切面,同样的,因为该方法切面不仅仅是可以处理 Service 方法了,于是改名叫 MethodAspect。通过在 @Around 中加入 @annotation(anno),可以将注解实例注入到参数中:

@Aspect
@Component
public class MethodAspect {

    /**
     * 方法连接点(处理被 @MethodAspectAnno 注解的方法)
     */
    @Pointcut("@annotation(org.mizhou.aop.aspect.anno.MethodAspectAnno)")
    public void methodPointcut() { }

    /**
     * 切入被 @MethodAspectAnno 注解的方法
     *
     * @param point 连接点
     * @param anno 注解
     * 
     * @return 方法返回值
     * @throws Throwable 可能抛出的异常
     */
    @Around("methodPointcut() && @annotation(anno)")
    public Object doAround(ProceedingJoinPoint point, MethodAspectAnno anno) throws Throwable {
        // 通过注解获取处理器
        MethodAspectProcessor processor = MethodAspectProcessor.from(anno);

        // 方法不匹配,即不是要处理的业务方法
        if (!processor.isMatched(point)) {
            // 方法不匹配时的执行动作
            processor.onMismatch(point);
            // 直接执行该方法并返回结果
            return point.proceed();
        }

        // 执行之前
        boolean permitted = processor.onBefore(point);
        // 开始执行的时间
        long startTime = System.currentTimeMillis();

        // 方法返回值
        Object result;
        // 是否抛出了异常
        boolean thrown = false;

        // 目标方法被允许执行
        if (permitted) {
            try {
                // 执行目标方法
                result = point.proceed();
            } catch (Throwable e) {
                // 抛出异常
                thrown = true;
                // 处理异常
                processor.onThrow(point, e);
                // 抛出异常的情况下,则构造一个返回值的实例,用于业务服务方法的返回
                result = processor.getOnThrow(point, e);
            }
        }
        // 目标方法被禁止执行
        else {
            // 禁止执行时的返回值
            result = processor.getOnForbid(point);
        }

        // 切面结束
        processor.onComplete(point, startTime, !permitted, thrown, result);

        return result;
    }
}

最后在 DemoServiceImpl 的业务方法上,应用 @MethodAspectAnno,并指定处理方法的方法切面处理器:

@MethodAspectAnno(ServiceMethodProcessor.class)
public DivisionResponse divide(DivisionRequest request) throws Exception {
    DivisionResponse response = new DivisionResponse();

    // 请求参数
    int dividend = request.getDividend();
    int divisor = request.getDivisor();

    // 模拟检查业务参数
    // ...检查业务参数...
    TimeUnit.MILLISECONDS.sleep(300);

    // 模拟执行业务
    int result = dividend / divisor;

    // 设置业务执行结果
    response.setData(result);

    return response;
}

以及在不匹配的方法上,应用 @MethodAspectAnno(ServiceMethodProcessor.class)

@Service
public class NumberServiceImpl implements NumberService {

    @Override
    // 不匹配的方法处理器
    @MethodAspectAnno(ServiceMethodProcessor.class)
    public int divide(int dividend, int divisor) throws Exception {
        // 模拟检查业务参数
        // ...检查业务参数...
        TimeUnit.MILLISECONDS.sleep(300);

        // 模拟执行业务
        int result = dividend / divisor;

        return result;
    }

}

大功告成,来测试一下:

正常调用(http://localhost:8080/division.do?a=2&b=1):

正常调用的情况

调用出错(http://localhost:8080/division.do?a=2&b=0):

调用出错的情况

测试与切面处理器不匹配的方法(http://localhost:8080/another.do?a=2&b=1):

方法不匹配

优化

此时我的耳边又响起了一个声音(为什么我想的总是这么多...):

心情复杂

不管是 MismatchMethodAspectProcessor 还是用于业务方法的 ServiceMethodProcessor,或者将来定义的一些其他的 MethodAspectProcessor,它们因为没有定义变量或者没有与其他类分享变量,所以它们是线程安全的,没必要每次在执行切面调用时,都去新建一个对应的方法切面处理器。

缓存

于是想到了 Netty 里面的 @Sharable,用来标记一个 ChannelHandler 是可共享的。所以我们也可以先定义一个 @Sharble 注解,用来标记一个 MethodAspectProcessor 是可共享的,即线程安全的。然后对被 @Sharable 注解的方法处理器,进行缓存 —— 缓存的键就是方法切面处理器的 Class,值就是方法处理器的实例。定义 @Sharable 注解:

/**
 * 标记一个类可共享
 */
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Sharable {
    
}

然后修改 MethodAspectProcessor 中从注解获取方法切面处理器的 from 方法:

public interface MethodAspectProcessor<R> {

    /**
     * 用于缓存被 @Sharable 注解的 MethodAspectProcessor(即线程安全可共享的)
     */
    Map<Class, MethodAspectProcessor> PROCESSOR_CACHE = new ConcurrentHashMap<>();
  
    ......

    /**
     * 获取 和被注解方法匹配的 切面处理器
     *
     * @param anno 注解
     * @return 匹配的切面处理器
     * @throws Exception 反射创建切面处理器时的异常
     */
    static MethodAspectProcessor from(MethodAspectAnno anno) throws Exception {
        // 获取方法切面处理器的类型
        Class<? extends MethodAspectProcessor> processorType = anno.value();
        Sharable sharableAnno = processorType.getAnnotation(Sharable.class);

        // processorType 上存在 @Sharable 注解,方法处理器可共享
        if (sharableAnno != null) {
            // 尝试先从缓存中获取
            MethodAspectProcessor processor = PROCESSOR_CACHE.get(processorType);
            // 缓存中存在对应的方法处理器
            if (processor != null) {
                return processor;
            }
        }

        // 如果指定的处理器类是接口或者抽象类
        if (processorType.isInterface() || Modifier.isAbstract(processorType.getModifiers())) {
            processorType = MismatchMethodAspectProcessor.class;
        }

        // 创建切面处理器
        MethodAspectProcessor processor = processorType.newInstance();

        // 处理器可共享
        if (sharableAnno != null) {
            // 对 方法处理器 进行缓存
            PROCESSOR_CACHE.put(processorType, processor);
        }

        return processor;
    }

}

OK,完美,非常满意~

后记

在最近的实践中,发现我们的 MethodAspectProcessor 许多时候都不能脱离 Spring 容器,即需要让 MethodAspectProcessor 成为 Spring 容器中的 Bean,从而结合 Spring 容器中的其他 Bean,完成更加复杂的功能。例如某个方法需要实现 3 秒内防重复调用,我们便需要使用到缓存,而缓存相关的 Bean 是由 Spring 来管理的。所以我们现在改造我们的 AOP 方法,让所有的 MethodAspectProcessor 都交给 Spring 管理。首先我们修改各个 MethodAspectProcessor,使用 @Component 注解让其成为 Spring 容器中的 Bean:

@Component
public class MismatchMethodAspectProcessor<R> extends AbstractMethodAspectProcessor<R>
@Component
public class ServiceMethodProcessor extends AbstractMethodAspectProcessor<BaseResponse>

修改 MethodAspect,让其从 Spring 容器中获取方法切面处理器:

@Aspect
@Component
public class MethodAspect implements ApplicationContextAware {

    private final Logger logger = LoggerFactory.getLogger(this.getClass());

    private ApplicationContext appContext;

    /**
     * 方法连接点(处理被 @MethodAspectAnno 注解的方法)
     */
    @Pointcut("@annotation(xyz.mizhoux.aop.aspect.anno.MethodAspectAnno)")
    public void methodPointcut() { }

    /**
     * 切入被 @MethodAspectAnno 注解的方法
     *
     * @param point 连接点
     * @param anno  注解
     * @return 方法返回值
     * @throws Throwable 可能抛出的异常
     */
    @Around("methodPointcut() && @annotation(anno)")
    public Object doAround(ProceedingJoinPoint point, MethodAspectAnno anno) throws Throwable {
        // 通过注解获取处理器
        MethodAspectProcessor processor = getProcessor(anno);

        .......
    }

    private MethodAspectProcessor getProcessor(MethodAspectAnno anno) {
        Class<? extends MethodAspectProcessor> processorType = anno.value();

        try {
            return appContext.getBean(processorType);
        } catch (BeansException ex) {
            logger.error("{} 在 Spring 容器中不存在", processorType.getName());
        }

        return appContext.getBean(MismatchMethodAspectProcessor.class);
    }

    @Override
    public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
        appContext = applicationContext;
    }
}

本文最终方案的代码可见:aop-method

相关文章

  • 基于 AOP 抽离方法的重复代码

    背景 今天师兄和我说,“之叶,你设计一个方案,把目前业务方法中和业务无关的逻辑都抽离出来,让每个方法只关心自己的业...

  • Spring AOP

    AOP 面向切面编程,旨在各个方法中抽离出每个方法都要执行的耦合方法,达到代码复用的目的 JAVA中的AOP的实现...

  • 2018-11-06-day03-规格与模板管理-1

    1.brand.html抽离出service层: 目的: 不同的控制层可以重复的调用服务层的代码,将代码抽离出来重...

  • PHP小白入门到实战(二)操作

    文件引入 DRY原则 don't repeat yourself 重复代码抽离 include & require...

  • 工厂模式

    简单工厂 工厂方法 工厂方法跟简单工厂的组合 总结 简单工厂把对象的创建过程抽离出来 把独立的代码块抽离出来让代码...

  • Spring框架 中的 AOP的说明

    什么是 AOP AOP 的作用及优势作用 在程序运行期间,不修改源码对已有方法进行增强。优势:减少重复代码提高开发...

  • 2020-09-19 Android AOP 之 AspectJ

    什么是aop AOP 即面向切面编程,它主要的作用是把一些具有相同属性或者相同功能的代码抽离出来划分到对应的模块里...

  • Kotlin顶级函数

    顶级函数 在Java中,遇到一段重复性非常高的代码。我们会将其抽离成一个方法。这样的代码就有比较高的内聚。当遇到需...

  • 解决自动化测试可读性查,难以维护的几个思路

    1.抽离测试数据,数据驱动测试 (1)对于场景相同,仅仅是数据输入不同的场景,将测试数据抽离出来将避免大量重复代码...

  • Spring AOP 切入任意自定义方法的技巧 (不用 Aspe

    网上一大堆 Spring AOP 切面打日志的方法,笔者使用注解切入,不再赘述。 笔者在抽离 “同步更新缓存” 的...

网友评论

      本文标题:基于 AOP 抽离方法的重复代码

      本文链接:https://www.haomeiwen.com/subject/qifyvctx.html