美文网首页
python函数式编程

python函数式编程

作者: 为瞬间停留 | 来源:发表于2018-06-25 11:07 被阅读14次

    函数也是变量,可以作为函数的参数,以及返回值
    作为参数,称作高阶函数,map reduce filter sorted
    作为返回值,称作返回函数,装饰器decorator(函数运行中加一些功能),偏函数(把函数的某些参数固化返回一个新参数)

    一.
    1.变量可以指向函数
    2.函数名也是变量
    3.传入函数
    既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。

    def add(x, y, f):
        return f(x) + f(y)
    
    print(add(-5, 6, abs))
    
    

    二.
    1.map/reduce
    我们先看map。map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

    def f(x):
        return x * x
    r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
    print r
    

    再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

    reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
    
    from functools import reduce
    def add(x, y):
        return x + y
    print reduce(add, [1, 3, 5, 7, 9])
    #25
    

    2.filter
    Python内建的filter()函数用于过滤序列。
    filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

    def is_odd(n):
        return n % 2 == 1
    
    print list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
    #[1, 5, 9, 15]
    

    3.sorted
    排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。

    Python内置的sorted()函数就可以对list进行排序:

    sorted([36, 5, -12, 9, -21])
    [-21, -12, 5, 9, 36]
    

    sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序,key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。

    sorted([36, 5, -12, 9, -21], key=abs)
    [5, 9, -12, -21, 36]
    
    sorted(['bob', 'about', 'Zoo', 'Credit'])
    ['Credit', 'Zoo', 'about', 'bob']
    

    默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a',结果,大写字母Z会排在小写字母a的前面。我们给sorted传入key函数,即可实现忽略大小写的排序:

    sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
    ['about', 'bob', 'Credit', 'Zoo']
    

    要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:

    sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
    ['Zoo', 'Credit', 'bob', 'about']
    

    4.返回函数
    高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
    我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:

    def calc_sum(*args):
        ax = 0
        for n in args:
            ax = ax + n
        return ax
    

    但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:

    def lazy_sum(*args):
        def sum():
            ax = 0
            for n in args:
                ax = ax + n
            return ax
        return sum
    

    当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:

    >>> f = lazy_sum(1, 3, 5, 7, 9)
    >>> f
    <function lazy_sum.<locals>.sum at 0x101c6ed90>
    >>> f()
    25
    

    请再注意一点,当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数:

    >>> f1 = lazy_sum(1, 3, 5, 7, 9)
    >>> f2 = lazy_sum(1, 3, 5, 7, 9)
    >>> f1==f2
    False
    

    5.闭包
    注意到返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。

    另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()才执行。我们来看一个例子:

    def count():
        fs = []
        for i in range(1, 4):
            def f():
                 return i*i
            fs.append(f)
        return fs
    
    f1, f2, f3 = count()
    
    >>> f1()
    9
    >>> f2()
    9
    >>> f3()
    9
    

    全部都是9!原因就在于返回的函数引用了变量i,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i已经变成了3,因此最终结果为9。

    6.匿名函数
    当我们在传入函数时,有些时候,不需要显式地定义函数,直接传入匿名函数更方便。
    在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算f(x)=x2时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:

    >>> list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
    [1, 4, 9, 16, 25, 36, 49, 64, 81]
    

    匿名函数lambda x: x * x实际上就是:

    def f(x):
        return x * x
    

    用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:

    >>> f = lambda x: x * x
    >>> f
    <function <lambda> at 0x101c6ef28>
    >>> f(5)
    25
    

    同样,也可以把匿名函数作为返回值返回,比如:

    def build(x, y):
        return lambda: x * x + y * y
    

    7.装饰器
    由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。

    >>> def now():
    ...     print('2015-3-25')
    ...
    >>> f = now
    >>> f()
    2015-3-25
    

    函数对象有一个name属性,可以拿到函数的名字:

    >>> now.__name__
    'now'
    >>> f.__name__
    'now'
    

    现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
    本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:

    def log(func):
        def wrapper(*args, **kw):
            print('call %s():' % func.__name__)
            return func(*args, **kw)
        return wrapper
    
    @log
    def now():
        print('2015-3-25')
    
    >>> now()
    call now():
    2015-3-25
    

    把@log放到now()函数的定义处,相当于执行了语句:

    now = log(now)
    

    由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。

    wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。

    如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:

    def log(text):
        def decorator(func):
            def wrapper(*args, **kw):
                print('%s %s():' % (text, func.__name__))
                return func(*args, **kw)
            return wrapper
        return decorator
    

    这个3层嵌套的decorator用法如下:

    @log('execute')
    def now():
        print('2015-3-25')
    

    和两层嵌套的decorator相比,3层嵌套的效果是这样的:

    >>> now = log('execute')(now)
    

    我们来剖析上面的语句,首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。

    以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有name等属性,但你去看经过decorator装饰之后的函数,它们的name已经从原来的'now'变成了'wrapper':

    >>> now.__name__
    'wrapper'
    

    因为返回的那个wrapper()函数名字就是'wrapper',所以,需要把原始函数的name等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。

    不需要编写wrapper.name = func.name这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:

    import functools
    def log(func):
        @functools.wraps(func)
        def wrapper(*args, **kw):
            print('call %s():' % func.__name__)
            return func(*args, **kw)
        return wrapper
    
    import functools
    
    def log(text):
        def decorator(func):
            @functools.wraps(func)
            def wrapper(*args, **kw):
                print('%s %s():' % (text, func.__name__))
                return func(*args, **kw)
            return wrapper
        return decorator
    

    8.偏函数
    Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。

    在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。举例如下:

    int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:

    >>> int('12345')
    12345
    

    但int()函数还提供额外的base参数,默认值为10。如果传入base参数,就可以做N进制的转换:

    >>> int('12345', base=8)
    5349
    >>> int('12345', 16)
    74565
    

    假设要转换大量的二进制字符串,每次都传入int(x, base=2)非常麻烦,于是,我们想到,可以定义一个int2()的函数,默认把base=2传进去:

    def int2(x, base=2):
        return int(x, base)
    

    这样,我们转换二进制就非常方便了:

    >>> int2('1000000')
    64
    >>> int2('1010101')
    85
    

    functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:

    >>> import functools
    >>> int2 = functools.partial(int, base=2)
    >>> int2('1000000')
    64
    >>> int2('1010101')
    85
    

    所以,简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。

    相关文章

      网友评论

          本文标题:python函数式编程

          本文链接:https://www.haomeiwen.com/subject/qnpbkftx.html