50道练习带你玩转Pandas
王大毛
作者:王大毛,和鲸社区
出处:https://www.kesci.com/home/project/5ddc974ef41512002cec1dca
修改:黄海广
Pandas 是基于 NumPy 的一种数据处理工具,该工具为了解决数据分析任务而创建。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的函数和方法。这些练习着重DataFrame和Series对象的基本操作,包括数据的索引、分组、统计和清洗。
本文的代码可以到github下载:https://github.com/fengdu78/Data-Science-Notes/tree/master/3.pandas/4.Pandas50
基本操作
1.导入 Pandas 库并简写为 pd,并输出版本号
import pandas as pdpd.__version__
'0.22.0'
2. 从列表创建 Series
arr = [0, 1, 2, 3, 4]df = pd.Series(arr) # 如果不指定索引,则默认从 0 开始df
0 01 12 23 34 4dtype: int64
3. 从字典创建 Series
d = {'a':1,'b':2,'c':3,'d':4,'e':5}df = pd.Series(d)df
a 1b 2c 3d 4e 5dtype: int64
4. 从 NumPy 数组创建 DataFrame
import numpy as npdates = pd.date_range('today', periods=6) # 定义时间序列作为 indexnum_arr = np.random.randn(6, 4) # 传入 numpy 随机数组columns = ['A', 'B', 'C', 'D'] # 将列表作为列名df = pd.DataFrame(num_arr, index=dates, columns=columns)df
|
| A | B | C | D |
| --- | --- | --- | --- | --- |
| 2020-01-10 22:46:01.642021 | 0.277099 | 0.665053 | 0.882637 | -0.598895 |
| 2020-01-11 22:46:01.642021 | 0.365233 | -2.529804 | -0.699849 | 0.159623 |
| 2020-01-12 22:46:01.642021 | -0.831850 | -2.099049 | -0.976407 | -0.342800 |
| 2020-01-13 22:46:01.642021 | 0.680800 | 1.682999 | 0.144469 | -2.503013 |
| 2020-01-14 22:46:01.642021 | -0.413880 | 0.876169 | -1.047877 | 0.996865 |
| 2020-01-15 22:46:01.642021 | 1.373956 | 0.029732 | -0.549268 | -0.287584 |
5. 从CSV中创建 DataFrame,分隔符为“;”,编码格式为gbk
df = pd.read_csv('test.csv', encoding='gbk', sep=';')
6\. 从字典对象创建DataFrame,并设置索引
import numpy as np
data = {
'animal': ['cat', 'cat', 'snake', 'dog', 'dog', 'cat', 'snake', 'cat', 'dog', 'dog'],
'age': [2.5, 3, 0.5, np.nan, 5, 2, 4.5, np.nan, 7, 3],
'visits': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']
}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
df = pd.DataFrame(data, index=labels)
df
|
| age | animal | priority | visits |
| --- | --- | --- | --- | --- |
| a | 2.5 | cat | yes | 1 |
| b | 3.0 | cat | yes | 3 |
| c | 0.5 | snake | no | 2 |
| d | NaN | dog | yes | 3 |
| e | 5.0 | dog | no | 2 |
| f | 2.0 | cat | no | 3 |
| g | 4.5 | snake | no | 1 |
| h | NaN | cat | yes | 1 |
| i | 7.0 | dog | no | 2 |
| j | 3.0 | dog | no | 1 |
7. 显示df的基础信息,包括行的数量;列名;每一列值的数量、类型
df.info()
# 方法二
# df.describe()
<class 'pandas.core.frame.DataFrame'>
Index: 10 entries, a to j
Data columns (total 4 columns):
age 8 non-null float64
animal 10 non-null object
priority 10 non-null object
visits 10 non-null int64
dtypes: float64(1), int64(1), object(2)
memory usage: 400.0+ bytes
8. 展示df的前3行
df.iloc[:3]
# 方法二
#df.head(3)
|
| age | animal | priority | visits |
| --- | --- | --- | --- | --- |
| a | 2.5 | cat | yes | 1 |
| b | 3.0 | cat | yes | 3 |
| c | 0.5 | snake | no | 2 |
9. 取出df的animal和age列
df.loc[:, ['animal', 'age']]
# 方法二
# df[['animal', 'age']]
|
| animal | age |
| --- | --- | --- |
| a | cat | 2.5 |
| b | cat | 3.0 |
| c | snake | 0.5 |
| d | dog | NaN |
| e | dog | 5.0 |
| f | cat | 2.0 |
| g | snake | 4.5 |
| h | cat | NaN |
| i | dog | 7.0 |
| j | dog | 3.0 |
10. 取出索引为[3, 4, 8]行的animal和age列
df.loc[df.index[[3, 4, 8]], ['animal', 'age']]
|
| animal | age |
| --- | --- | --- |
| d | dog | NaN |
| e | dog | 5.0 |
| i | dog | 7.0 |
11. 取出age值大于3的行
df[df['age'] > 3]
|
| age | animal | priority | visits |
| --- | --- | --- | --- | --- |
| e | 5.0 | dog | no | 2 |
| g | 4.5 | snake | no | 1 |
| i | 7.0 | dog | no | 2 |
12. 取出age值缺失的行
df[df['age'].isnull()]
|
| age | animal | priority | visits |
| --- | --- | --- | --- | --- |
| d | NaN | dog | yes | 3 |
| h | NaN | cat | yes | 1 |
13.取出age在2,4间的行(不含)
df[(df['age']>2) & (df['age']>4)]# 方法二# df[df['age'].between(2, 4)]
|
| age | animal | priority | visits |
| --- | --- | --- | --- | --- |
| e | 5.0 | dog | no | 2 |
| g | 4.5 | snake | no | 1 |
| i | 7.0 | dog | no | 2 |
14. f 行的age改为1.5
df.loc['f', 'age'] = 1.5
15. 计算visits的总和
df['visits'].sum()
19
16. 计算每个不同种类animal的age的平均数
df.groupby('animal')['age'].mean()
animalcat 2.333333dog 5.000000snake 2.500000Name: age, dtype: float64
17. 在df中插入新行k,然后删除该行
#插入df.loc['k'] = [5.5, 'dog', 'no', 2]# 删除df = df.drop('k')df
|
| age | animal | priority | visits |
| --- | --- | --- | --- | --- |
| a | 2.5 | cat | yes | 1 |
| b | 3.0 | cat | yes | 3 |
| c | 0.5 | snake | no | 2 |
| d | NaN | dog | yes | 3 |
| e | 5.0 | dog | no | 2 |
| f | 1.5 | cat | no | 3 |
| g | 4.5 | snake | no | 1 |
| h | NaN | cat | yes | 1 |
| i | 7.0 | dog | no | 2 |
| j | 3.0 | dog | no | 1 |
18. 计算df中每个种类animal的数量
df['animal'].value_counts()
dog 4cat 4snake 2Name: animal, dtype: int64
19. 先按age降序排列,后按visits升序排列
df.sort_values(by=['age', 'visits'], ascending=[False, True])
|
| age | animal | priority | visits |
| --- | --- | --- | --- | --- |
| i | 7.0 | dog | no | 2 |
| e | 5.0 | dog | no | 2 |
| g | 4.5 | snake | no | 1 |
| j | 3.0 | dog | no | 1 |
| b | 3.0 | cat | yes | 3 |
| a | 2.5 | cat | yes | 1 |
| f | 1.5 | cat | no | 3 |
| c | 0.5 | snake | no | 2 |
| h | NaN | cat | yes | 1 |
| d | NaN | dog | yes | 3 |
20. 将priority列中的yes, no替换为布尔值True, False
df['priority'] = df['priority'].map({'yes': True, 'no': False})df
|
| age | animal | priority | visits |
| --- | --- | --- | --- | --- |
| a | 2.5 | cat | True | 1 |
| b | 3.0 | cat | True | 3 |
| c | 0.5 | snake | False | 2 |
| d | NaN | dog | True | 3 |
| e | 5.0 | dog | False | 2 |
| f | 1.5 | cat | False | 3 |
| g | 4.5 | snake | False | 1 |
| h | NaN | cat | True | 1 |
| i | 7.0 | dog | False | 2 |
| j | 3.0 | dog | False | 1 |
21. 将animal列中的snake替换为python
df['animal'] = df['animal'].replace('snake', 'python')df
|
| age | animal | priority | visits |
| --- | --- | --- | --- | --- |
| a | 2.5 | cat | True | 1 |
| b | 3.0 | cat | True | 3 |
| c | 0.5 | python | False | 2 |
| d | NaN | dog | True | 3 |
| e | 5.0 | dog | False | 2 |
| f | 1.5 | cat | False | 3 |
| g | 4.5 | python | False | 1 |
| h | NaN | cat | True | 1 |
| i | 7.0 | dog | False | 2 |
| j | 3.0 | dog | False | 1 |
22. 对每种animal的每种不同数量visits,计算平均age,即,返回一个表格,行是aniaml种类,列是visits数量,表格值是行动物种类列访客数量的平均年龄
df.pivot_table(index='animal', columns='visits', values='age', aggfunc='mean')
visits | 1 | 2 | 3 |
---|---|---|---|
animal | |||
--- | --- | --- | --- |
cat | 2.5 | NaN | 2.25 |
dog | 3.0 | 6.0 | NaN |
python | 4.5 | 0.5 | NaN |
进阶操作
23. 有一列整数列A的DatraFrame,删除数值重复的行
df = pd.DataFrame({'A': [1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7]})print(df)df1 = df.loc[df['A'].shift() != df['A']]# 方法二# df1 = df.drop_duplicates(subset='A')print(df1)
A0 11 22 23 34 45 56 57 58 69 710 7 A0 11 23 34 45 58 69 7
24. 一个全数值DatraFrame,每个数字减去该行的平均数
df = pd.DataFrame(np.random.random(size=(5, 3)))print(df)df1 = df.sub(df.mean(axis=1), axis=0)print(df1)
0 1 20 0.465407 0.152497 0.8611741 0.623682 0.627339 0.4956522 0.835176 0.862376 0.6930473 0.319698 0.306709 0.6540634 0.234855 0.194232 0.438597 0 1 20 -0.027619 -0.340529 0.3681481 0.041457 0.045115 -0.0865722 0.038310 0.065509 -0.1038193 -0.107125 -0.120114 0.2272394 -0.054373 -0.094996 0.149368
25. 一个有5列的DataFrame,求哪一列的和最小
df = pd.DataFrame(np.random.random(size=(5, 5)), columns=list('abcde'))print(df)df.sum().idxmin()
a b c d e0 0.653658 0.730994 0.223025 0.456730 0.2882831 0.937546 0.640995 0.197359 0.671524 0.0060352 0.392762 0.174955 0.053928 0.318634 0.4645343 0.741499 0.197861 0.988105 0.633780 0.9142504 0.469285 0.309043 0.162127 0.032480 0.863017'c'
26. 给定DataFrame,求A列每个值的前3大的B的值的和
df = pd.DataFrame({'A': list('aaabbcaabcccbbc'), 'B': [12,345,3,1,45,14,4,52,54,23,235,21,57,3,87]})print(df)df1 = df.groupby('A')['B'].nlargest(3).sum(level=0)print(df1)
A B0 a 121 a 3452 a 33 b 14 b 455 c 146 a 47 a 528 b 549 c 2310 c 23511 c 2112 b 5713 b 314 c 87Aa 409b 156c 345Name: B, dtype: int64
27. 给定DataFrame,有列A, B,A的值在1-100(含),对A列每10步长,求对应的B的和
df = pd.DataFrame({ 'A': [1, 2, 11, 11, 33, 34, 35, 40, 79, 99], 'B': [1, 2, 11, 11, 33, 34, 35, 40, 79, 99]})print(df)df1 = df.groupby(pd.cut(df['A'], np.arange(0, 101, 10)))['B'].sum()print(df1)
A B0 1 11 2 22 11 113 11 114 33 335 34 346 35 357 40 408 79 799 99 99A(0, 10] 3(10, 20] 22(20, 30] 0(30, 40] 142(40, 50] 0(50, 60] 0(60, 70] 0(70, 80] 79(80, 90] 0(90, 100] 99Name: B, dtype: int64
28. 给定DataFrame,计算每个元素至左边最近的0(或者至开头)的距离,生成新列y
df = pd.DataFrame({'X': [7, 2, 0, 3, 4, 2, 5, 0, 3, 4]})# 方法一x = (df['X'] != 0).cumsum()y = x != x.shift()df['Y'] = y.groupby((y != y.shift()).cumsum()).cumsum()print(df)
X Y0 7 1.01 2 2.02 0 0.03 3 1.04 4 2.05 2 3.06 5 4.07 0 0.08 3 1.09 4 2.0
# 方法二df['Y'] = df.groupby((df['X'] == 0).cumsum()).cumcount()first_zero_idx = (df['X'] == 0).idxmax()df['Y'].iloc[0:first_zero_idx] += 1print(df)
X Y0 7 11 2 22 0 03 3 14 4 25 2 36 5 47 0 08 3 19 4 2
29. 一个全数值的DataFrame,返回最大3个值的坐标
df = pd.DataFrame(np.random.random(size=(5, 3)))print(df)df.unstack().sort_values()[-3:].index.tolist()
0 1 20 0.974321 0.454025 0.0188151 0.323491 0.468609 0.8344242 0.340960 0.826835 0.5032523 0.812414 0.202745 0.9651684 0.633172 0.270281 0.915212[(2, 4), (2, 3), (0, 0)]
30. 给定DataFrame,将负值代替为同组的平均值
df = pd.DataFrame({ 'grps': list('aaabbcaabcccbbc'), 'vals': [-12, 345, 3, 1, 45, 14, 4, -52, 54, 23, -235, 21, 57, 3, 87]})print(df)def replace(group): mask = group < 0 group[mask] = group[~mask].mean() return groupdf['vals'] = df.groupby(['grps'])['vals'].transform(replace)print(df)
grps vals0 a -121 a 3452 a 33 b 14 b 455 c 146 a 47 a -528 b 549 c 2310 c -23511 c 2112 b 5713 b 314 c 87 grps vals0 a 117.3333331 a 345.0000002 a 3.0000003 b 1.0000004 b 45.0000005 c 14.0000006 a 4.0000007 a 117.3333338 b 54.0000009 c 23.00000010 c 36.25000011 c 21.00000012 b 57.00000013 b 3.00000014 c 87.000000
31. 计算3位滑动窗口的平均值,忽略NAN
df = pd.DataFrame({ 'group': list('aabbabbbabab'), 'value': [1, 2, 3, np.nan, 2, 3, np.nan, 1, 7, 3, np.nan, 8]})print(df)g1 = df.groupby(['group'])['value']g2 = df.fillna(0).groupby(['group'])['value']s = g2.rolling(3, min_periods=1).sum() / g1.rolling(3, min_periods=1).count()s.reset_index(level=0, drop=True).sort_index()
group value0 a 1.01 a 2.02 b 3.03 b NaN4 a 2.05 b 3.06 b NaN7 b 1.08 a 7.09 b 3.010 a NaN11 b 8.00 1.0000001 1.5000002 3.0000003 3.0000004 1.6666675 3.0000006 3.0000007 2.0000008 3.6666679 2.00000010 4.50000011 4.000000Name: value, dtype: float64
Series 和 Datetime索引
32. 创建Series s,将2015所有工作日作为随机值的索引
dti = pd.date_range(start='2015-01-01', end='2015-12-31', freq='B')s = pd.Series(np.random.rand(len(dti)), index=dti)s.head(10)
2015-01-01 0.5034582015-01-02 0.1941852015-01-05 0.5509302015-01-06 0.1743092015-01-07 0.3169112015-01-08 0.2883852015-01-09 0.2932852015-01-12 0.3404362015-01-13 0.6300092015-01-14 0.076130Freq: B, dtype: float64
33. 所有礼拜三的值求和
s[s.index.weekday == 2].sum()
27.272318047689705
34. 求每个自然月的平均数
s.resample('M').mean()
2015-01-31 0.3754172015-02-28 0.5515602015-03-31 0.5407722015-04-30 0.4509572015-05-31 0.3691192015-06-30 0.5886252015-07-31 0.5843582015-08-31 0.6097512015-09-30 0.5112852015-10-31 0.5555462015-11-30 0.5287772015-12-31 0.574317Freq: M, dtype: float64
35. 每连续4个月为一组,求最大值所在的日期
s.groupby(pd.Grouper(freq='4M')).idxmax()
2015-01-31 2015-01-152015-05-31 2015-02-042015-09-30 2015-06-022016-01-31 2015-12-08dtype: datetime64[ns]
36. 创建2015-2016每月第三个星期四的序列
pd.date_range('2015-01-01', '2016-12-31', freq='WOM-3THU')#数据清洗df = pd.DataFrame({'From_To': ['LoNDon_paris', 'MAdrid_miLAN', 'londON_StockhOlm', 'Budapest_PaRis', 'Brussels_londOn'], 'FlightNumber': [10045, np.nan, 10065, np.nan, 10085], 'RecentDelays': [[23, 47], [], [24, 43, 87], [13], [67, 32]], 'Airline': ['KLM(!)', '<Air France> (12)', '(British Airways. )', '12\. Air France', '"Swiss Air"']})df
|
| Airline | FlightNumber | From_To | RecentDelays |
| --- | --- | --- | --- | --- |
| 0 | KLM(!) | 10045.0 | LoNDon_paris | [23, 47] |
| 1 | <Air France> (12) | NaN | MAdrid_miLAN | [] |
| 2 | (British Airways. ) | 10065.0 | londON_StockhOlm | [24, 43, 87] |
| 3 | 12. Air France | NaN | Budapest_PaRis | [13] |
| 4 | "Swiss Air" | 10085.0 | Brussels_londOn | [67, 32] |
37. FlightNumber列中有些值缺失了,他们本来应该是每一行增加10,填充缺失的数值,并且令数据类型为整数
df['FlightNumber'] = df['FlightNumber'].interpolate().astype(int)df
|
| Airline | FlightNumber | From_To | RecentDelays |
| --- | --- | --- | --- | --- |
| 0 | KLM(!) | 10045 | LoNDon_paris | [23, 47] |
| 1 | <Air France> (12) | 10055 | MAdrid_miLAN | [] |
| 2 | (British Airways. ) | 10065 | londON_StockhOlm | [24, 43, 87] |
| 3 | 12. Air France | 10075 | Budapest_PaRis | [13] |
| 4 | "Swiss Air" | 10085 | Brussels_londOn | [67, 32] |
38. 将From_To列从_分开,分成From, To两列,并删除原始列
temp = df.From_To.str.split('_', expand=True)temp.columns = ['From', 'To']df = df.join(temp)df = df.drop('From_To', axis=1)df
|
| Airline | FlightNumber | RecentDelays | From | To |
| --- | --- | --- | --- | --- | --- |
| 0 | KLM(!) | 10045 | [23, 47] | LoNDon | paris |
| 1 | <Air France> (12) | 10055 | [] | MAdrid | miLAN |
| 2 | (British Airways. ) | 10065 | [24, 43, 87] | londON | StockhOlm |
| 3 | 12. Air France | 10075 | [13] | Budapest | PaRis |
| 4 | "Swiss Air" | 10085 | [67, 32] | Brussels | londOn |
39. 将From, To大小写统一首字母大写其余小写
df['From'] = df['From'].str.capitalize()df['To'] = df['To'].str.capitalize()df
|
| Airline | FlightNumber | RecentDelays | From | To |
| --- | --- | --- | --- | --- | --- |
| 0 | KLM(!) | 10045 | [23, 47] | London | Paris |
| 1 | <Air France> (12) | 10055 | [] | Madrid | Milan |
| 2 | (British Airways. ) | 10065 | [24, 43, 87] | London | Stockholm |
| 3 | 12. Air France | 10075 | [13] | Budapest | Paris |
| 4 | "Swiss Air" | 10085 | [67, 32] | Brussels | London |
40. Airline列,有一些多余的标点符号,需要提取出正确的航司名称。举例:'(British Airways. )' 应该改为 'British Airways'.
df['Airline'] = df['Airline'].str.extract( '([a-zA-Z\s]+)', expand=False).str.strip()df
|
| Airline | FlightNumber | RecentDelays | From | To |
| --- | --- | --- | --- | --- | --- |
| 0 | KLM | 10045 | [23, 47] | London | Paris |
| 1 | Air France | 10055 | [] | Madrid | Milan |
| 2 | British Airways | 10065 | [24, 43, 87] | London | Stockholm |
| 3 | Air France | 10075 | [13] | Budapest | Paris |
| 4 | Swiss Air | 10085 | [67, 32] | Brussels | London |
41. Airline列,数据被以列表的形式录入,但是我们希望每个数字被录入成单独一列,delay_1, delay_2, ...没有的用NAN替代。
delays = df['RecentDelays'].apply(pd.Series)delays.columns = ['delay_{}'.format(n) for n in range(1, len(delays.columns)+1)]df = df.drop('RecentDelays', axis=1).join(delays)df
|
| Airline | FlightNumber | From | To | delay_1 | delay_2 | delay_3 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| 0 | KLM | 10045 | London | Paris | 23.0 | 47.0 | NaN |
| 1 | Air France | 10055 | Madrid | Milan | NaN | NaN | NaN |
| 2 | British Airways | 10065 | London | Stockholm | 24.0 | 43.0 | 87.0 |
| 3 | Air France | 10075 | Budapest | Paris | 13.0 | NaN | NaN |
| 4 | Swiss Air | 10085 | Brussels | London | 67.0 | 32.0 | NaN |
层次化索引
42. 用 letters = ['A', 'B', 'C']和 numbers = list(range(10))的组合作为系列随机值的层次化索引
letters = ['A', 'B', 'C']numbers = list(range(4))mi = pd.MultiIndex.from_product([letters, numbers])s = pd.Series(np.random.rand(12), index=mi)s
A 0 0.250785 1 0.146978 2 0.596062 3 0.064608B 0 0.709660 1 0.515778 2 0.483163 3 0.524490C 0 0.360434 1 0.987620 2 0.527151 3 0.636960dtype: float64
43. 检查s是否是字典顺序排序的
s.index.is_lexsorted()# 方法二# s.index.lexsort_depth == s.index.nlevels
True
44. 选择二级索引为1, 3的行
s.loc[:, [1, 3]]
A 1 0.146978 3 0.064608B 1 0.515778 3 0.524490C 1 0.987620 3 0.636960dtype: float64
45. 对s进行切片操作,取一级索引至B,二级索引从2开始到最后
s.loc[pd.IndexSlice[:'B', 2:]]# 方法二# s.loc[slice(None, 'B'), slice(2, None)]
A 2 0.596062 3 0.064608B 2 0.483163 3 0.524490dtype: float64
46. 计算每个一级索引的和(A, B, C每一个的和)
s.sum(level=0)#方法二#s.unstack().sum(axis=0)
A 1.058433B 2.233091C 2.512164dtype: float64
47. 交换索引等级,新的Series是字典顺序吗?不是的话请排序
new_s = s.swaplevel(0, 1)print(new_s)print(new_s.index.is_lexsorted())new_s = new_s.sort_index()print(new_s)
0 A 0.2507851 A 0.1469782 A 0.5960623 A 0.0646080 B 0.7096601 B 0.5157782 B 0.4831633 B 0.5244900 C 0.3604341 C 0.9876202 C 0.5271513 C 0.636960dtype: float64False0 A 0.250785 B 0.709660 C 0.3604341 A 0.146978 B 0.515778 C 0.9876202 A 0.596062 B 0.483163 C 0.5271513 A 0.064608 B 0.524490 C 0.636960dtype: float64
## 可视化import matplotlib.pyplot as pltdf = pd.DataFrame({"xs": [1, 5, 2, 8, 1], "ys": [4, 2, 1, 9, 6]})plt.style.use('ggplot')
48. 画出df的散点图
df.plot.scatter("xs", "ys", color = "black", marker = "x")
<matplotlib.axes._subplots.AxesSubplot at 0x1f188ddacc0>
![](https://img.haomeiwen.com/i1064595/058bef653deb3c9b.gif)
49. 可视化指定4维DataFrame
df = pd.DataFrame({ "productivity": [5, 2, 3, 1, 4, 5, 6, 7, 8, 3, 4, 8, 9], "hours_in": [1, 9, 6, 5, 3, 9, 2, 9, 1, 7, 4, 2, 2], "happiness": [2, 1, 3, 2, 3, 1, 2, 3, 1, 2, 2, 1, 3], "caffienated": [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0]})df.plot.scatter( "hours_in", "productivity", s=df.happiness * 100, c=df.caffienated)
<matplotlib.axes._subplots.AxesSubplot at 0x1f18aea4c18>
![](https://img.haomeiwen.com/i1064595/487c2a8466fc9c56.gif)
50. 在同一个图中可视化2组数据,共用X轴,但y轴不同
df = pd.DataFrame({ "revenue": [57, 68, 63, 71, 72, 90, 80, 62, 59, 51, 47, 52], "advertising": [2.1, 1.9, 2.7, 3.0, 3.6, 3.2, 2.7, 2.4, 1.8, 1.6, 1.3, 1.9], "month": range(12)})ax = df.plot.bar("month", "revenue", color="green")df.plot.line("month", "advertising", secondary_y=True, ax=ax)ax.set_xlim((-1, 12))
(-1, 12)
![](https://img.haomeiwen.com/i1064595/4d295f1837162419.gif)
本文的代码可以到github下载:https://github.com/fengdu78/Data-Science-Notes/tree/master/3.pandas/4.Pandas50
![](https://img.haomeiwen.com/i1064595/de60dc209036dca4.gif)
备注:公众号菜单包含了整理了一本****AI小抄,非常适合在通勤路上用学习。
![](https://img.haomeiwen.com/i1064595/4f85380489762e6b.gif)
<pre style="margin: 10px 0px; padding: 0px; max-width: 100%; box-sizing: border-box !important; word-wrap: break-word !important;">
往期精彩回顾
备注:加入本站微信群或者qq群,请回复“加群”
加入知识星球(4500+用户,ID:92416895),请回复“知识星球”
</pre>
喜欢文章,点个****在看
![](https://img.haomeiwen.com/i1064595/4e0b2e2e0ce57c80.gif)
阅读 143
在看
写下你的留言
网友评论