Cox 回归模型
写在最开头:诚心推荐解螺旋麦子的Cox回归模型R教学视频!!!如果你对cox还稀里糊涂的,下面的链接,点!15分钟就能GET超级舒爽的代码~
【Cox回归的R操作:从单因素到多因素一气呵成https://www.bilibili.com/video/av18918951/ 】
根据麦子老师的课,我整理的代码如下↓
library(survival)
library(plyr)
library(xlsx)
data(lung)
### 1 COX 风险模型
## 1.1 转换数据类型(基线表要改成数值型)
Baseline = lung
## 1.2 单因素Cox回归,用sex
BaSurv <- Surv(time=Baseline$time,event=Baseline$status)
Baseline$BaSurv <- with(Baseline,BaSurv) # with函数的用法
SexCox <- coxph(BaSurv~sex,data=Baseline) # ties='breslow' 那么结果与SPSS一样
SexSum <- summary(SexCox)
HR <- round(SexSum$coefficients[,2],2)
PValue <- round(SexSum$coefficients[,5],3)
CI <- paste0(round(SexSum$conf.int[,3:4],2),collapse="-")
Unicox <- data.frame("Characteristics" = "Sex",
"Hazard ratio" = HR,
"CI95" = CI,
"p-Value" = PValue)
# 多个单因素回归,自定义函数,使用lapply(向量化处理)
UniCox <- function(x){
FML <- as.formula(paste0("BaSurv~",x))
SexCox <- coxph(FML,data=Baseline)
SexSum <- summary(SexCox)
HR <- round(SexSum$coefficients[,2],2)
PValue <- round(SexSum$coefficients[,5],3)
CI <- paste0(round(SexSum$conf.int[,3:4],2),collapse="-")
Unicox <- data.frame("Characteristics" = x,
"Hazard ratio" = HR,
"CI95" = CI,
"p-Value" = PValue)
return(Unicox)
}
UniCox("ph.ecog")
ValNames <- colnames(Baseline)[4:10]
UniVar <- lapply(ValNames,UniCox) #前面填名字,后面填函数
UniVar <- ldply(UniVar) #把list转换为data.frame
UniVar$Characteristics[UniVar$p.Value < 0.05]
## 1.3 多因素Cox回归分析
fml=as.formula(paste0("BaSurv~",paste0(UniVar$Characteristics[UniVar$p.Value < 0.05],collapse = "+")))
MultiCox <- coxph(fml,data=Baseline)
MultiSum <- summary(MultiCox)
MultiSum$coefficients
MultiSum$conf.int
MHR <- round(MultiSum$coefficients[,2],2)
MPValue <- round(MultiSum$coefficients[,5],3)
MCIL <- round(MultiSum$conf.int[,3],2)
MCIH <- round(MultiSum$conf.int[,4],2)
MCI <- paste0(MCIL,'-',MCIH)
MultiName=as.character(UniVar$Characteristics[UniVar$p.Value < 0.05])
Multicox <- data.frame("Characteristics" = MultiName,
"Hazard ratio" = MHR,
"CI95" = MCI,
"p-Value" = MPValue)
## 1.4 整合表格
Final <- merge.data.frame(UniVar,Multicox,by="Characteristics",all=T,sort = T)
write.xlsx(Final,'CoxOnline.xlsx',col.names = T,row.names = F,showNA = F)
Final。输出到excel就可以制作paper上那种表格啦
回到正题:如何构建预后signature?
参考文章:doi: 10.3389/fonc.2019.00078
doi: 10.3389/fonc.2019.00078
统计学中,多重检验,两两检验的p值需要进行Bonferroni校正。结合这篇文章(https://www.jianshu.com/p/1aeeac34ce51)理解下容错率FDR。
使用library(My.stepwise)
### 2 MUV Cox,逐步回归 stepwise forward
newBaseline <- Baseline
newBaseline$BoneRe.status <- ifelse(newBaseline$BoneRe.status==2,1,0)
Varlist <- colnames(newBaseline[9:26])
My.stepwise.coxph(Time = "time.m", Status = "BoneRe.status", variable.list = Varlist) # 结果只能直接输出
结果
得到含9个gene的signature。
接下来进行可视化。类似下图。
doi: 10.7150/ijbs.45050
(a) risk score 分布
# 散点图:Risk score 分布
ggplot(data=plot.data)+
geom_point(mapping = aes(x=id,y=data),
color=ifelse(plot.data$group==0,"blue","red"),
show.legend = F)+
labs(x="Patiens",y="Risk Score")
a
(b) PCA
library("factoextra")
dat_pca <- t(GSE2034_log)
DatPCA <- prcomp(dat_pca)
fviz_pca_ind(DatPCA, label="none",habillage=group_risk$group,
addEllipses=TRUE, ellipse.level=0.95,
palette = c("red","blue"))
b
(c)t-SNE
library(Rtsne)
tsne_out <- Rtsne(
dat_pca,
dims = 2, #降维之后的维度,默认值为2
pca = FALSE, #是否对原始数据进行PCA分析,再用PCA得到的topN主成分进行后续分析
perplexity = 60, #参数的取值必须小于(nrow(data) - 1 )/ 3
theta = 0.0,
max_iter = 1000 # 最大迭代次数
)
tsne_res <- as.data.frame(tsne_out$Y)
colnames(tsne_res) <- c("tSNE1","tSNE2")
head(tsne_res)
Group=group_risk$group
ggplot(tsne_res,aes(tSNE1,tSNE2,color=Group)) +
geom_point() + theme_bw() +
geom_hline(yintercept = 0,lty=2,col="black") +
geom_vline(xintercept = 0,lty=2,col="black") + #lwd
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "tSNE plot")
c
(d)略。
(e)生存曲线
Baseline$RiskScore = RiskScore
Baseline$Group = ifelse(Baseline$RiskScore>= median(Baseline$RiskScore),
"high-risk","low-risk")
ReSurv = Surv(time = Baseline$time.m, event = Baseline$relapse.status)
fit <- survfit(ReSurv ~ Group, data = Baseline)
ggsurvplot(fit, # 创建的拟合对象
#surv.median.line = "hv", # 增加中位生存时间
#conf.int = TRUE, # 显示置信区间
pval = TRUE, # 添加P值
# add.all = TRUE,# 添加总患者生存曲线
# risk.table = TRUE)
e
(f)ROC
library(pROC)
BoneRe.risk = roc(response = Baseline$BoneRe.status,
predictor = Baseline$RiskScore,ci=T,auc=T)
ggroc(BoneRe.risk,col="red")+
theme_bw()+
geom_abline(intercept=1,slope=1)+
labs(x="Specificity",y="Sensitivity",title = "ROC")+
annotate("text", x= 0.75, y= 0.75,label="AUC = 0.5726")
f
综上,我的signature 表现不是很好。。。 :)
网友评论