美文网首页
锁性能提升——ReadWriteLock

锁性能提升——ReadWriteLock

作者: 柚子过来 | 来源:发表于2018-06-21 17:50 被阅读0次

    这篇文章主要记录下ReadWriteLock的实现原理与用处,ReentrantLock可以实现线程安全,但是它的锁粒度太大,和Synchronized一样要么获取锁要么阻塞,与数据库共享锁与排他锁的思想类似,其实读操作与读操作是不用互相阻塞的,读写锁就是解决这个问题。

    1、 ReadWriteLock

    ReadWriteLock的定义如下,从定义可以看出实现了读写锁的分离:

    public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading
     */
    Lock readLock();
    
    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing
     */
    Lock writeLock();
    }
    

    我们一般使用是它的实现类ReentrantReadWriteLock:

     public ReentrantReadWriteLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
        readerLock = new ReadLock(this);
        writerLock = new WriteLock(this);
    }
    
    2、AQS

    Java的很多同步机制像ReentrantLock、Semphore、CountDownLatch等等都是使用AQS(AbstractQueuedSynchronizer)实现的,AQS抽象类提供了同步实现的框架,它的核心在于state、tryAcquire、tryRelease三个域属性,通过state来保存信号量/锁的状态或者个数,然后获取与释放的tryAcquire、tryRelease操作就是通过对state状态的修改来实现的。

    3、ReentrantReadWriteLock

    ReentrantReadWriteLock中的sync实现了AQS类并定义了自己的acquire、release方法。当我们调用readerLock.lock/unlock时就是调用的sync的tryAcquireShared与tryReleaseShared方法,同样writerLock.lock/unlock调用的是tryAcquire与tryRelease方法。先看看ReentrantReadWriteLock中AQS的变量的定义:

      abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 6317671515068378041L;
    
        /*
         * Read vs write count extraction constants and functions.
         * Lock state is logically divided into two unsigned shorts:
         * The lower one representing the exclusive (writer) lock hold count,
         * and the upper the shared (reader) hold count.
         */
    
        static final int SHARED_SHIFT   = 16;
        static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
        static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
        static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
    
        /** Returns the number of shared holds represented in count. */
        static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
        /** Returns the number of exclusive holds represented in count. */
        static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
    
        /**
         * A counter for per-thread read hold counts.
         * Maintained as a ThreadLocal; cached in cachedHoldCounter.
         */
        static final class HoldCounter {
            int count;          // initially 0
            // Use id, not reference, to avoid garbage retention
            final long tid = LockSupport.getThreadId(Thread.currentThread());
        }
    
        /**
         * ThreadLocal subclass. Easiest to explicitly define for sake
         * of deserialization mechanics.
         */
        static final class ThreadLocalHoldCounter
            extends ThreadLocal<HoldCounter> {
            public HoldCounter initialValue() {
                return new HoldCounter();
            }
        }
    
        /**
         * The number of reentrant read locks held by current thread.*/
        private transient ThreadLocalHoldCounter readHolds;
    
        /**
         * The hold count of the last thread to successfully acquire
         * readLock. */
        private transient HoldCounter cachedHoldCounter;
    
        private transient Thread firstReader;
        private transient int firstReaderHoldCount;
    

    这里只列出了重要的部分,之前说AQS的一个重点在于state,在ReentrantReadWriteLock中由于有读锁和写锁,但是只有一个state值,因为state是一个int值,所以这里的实现是高16位保存读锁的状态,低16位保存写锁的状态:

    static final int SHARED_SHIFT   = 16;
    static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
    static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
    static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
    
    /** Returns the number of shared holds represented in count. */   //这个c就是state值
    static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
    /** Returns the number of exclusive holds represented in count. */
    static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
    

    有了上面的基础,就可以看读写锁获取与释放锁的具体实现了,先看readLock的acquire方法:

    @ReservedStackAccess
        protected final int tryAcquireShared(int unused) {
            /*
             * Walkthrough:
             * 1. If write lock held by another thread, fail.
             * 2. Otherwise, this thread is eligible for
             *    lock wrt state, so ask if it should block
             *    because of queue policy. If not, try
             *    to grant by CASing state and updating count.
             *    Note that step does not check for reentrant
             *    acquires, which is postponed to full version
             *    to avoid having to check hold count in
             *    the more typical non-reentrant case.
             * 3. If step 2 fails either because thread
             *    apparently not eligible or CAS fails or count
             *    saturated, chain to version with full retry loop.
             */
            Thread current = Thread.currentThread();
            int c = getState();       //获取state值
            if (exclusiveCount(c) != 0 &&          //如果有写锁,并且持有写锁的不是当前线程,则获取读锁失败
                getExclusiveOwnerThread() != current)
                return -1;
            int r = sharedCount(c);             //当前读锁的数量
            if (!readerShouldBlock() &&
                r < MAX_COUNT &&
                compareAndSetState(c, c + SHARED_UNIT)) {   //通过CAS来更新state(读锁数量+1)
                if (r == 0) {
                    firstReader = current;
                    firstReaderHoldCount = 1;     
                } else if (firstReader == current) {
                    firstReaderHoldCount++;
                } else {
    
                  //这里注意因为锁是可重入的,cachedHoldCounter记录了最后1个获取读锁的线程的重入次数。
                  //firstReaderHoldCounter记录了第一个获取读锁的线程的重入次数
                 //对读锁进行计数时需要对每个线程持有的读锁分别计数。 
                 //HoldCounter 是一个ThreadLocal对象,使用它来记录线程持有的读锁数量
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null ||
                        rh.tid != LockSupport.getThreadId(current))
                        cachedHoldCounter = rh = readHolds.get();
                    else if (rh.count == 0)
                        readHolds.set(rh);
                    rh.count++;
                }
                return 1;
            }
            return fullTryAcquireShared(current);
        }
    

    再看看readLock的release方法,获取锁的时候计数增加,释放锁自然是计数减少:

       @ReservedStackAccess
        protected final boolean tryReleaseShared(int unused) {
            Thread current = Thread.currentThread();
            if (firstReader == current) {
                // assert firstReaderHoldCount > 0;
                if (firstReaderHoldCount == 1)
                    firstReader = null;
                else
                    firstReaderHoldCount--;
            } else {
                HoldCounter rh = cachedHoldCounter;
                if (rh == null ||
                    rh.tid != LockSupport.getThreadId(current))
                    rh = readHolds.get();
                int count = rh.count;
                if (count <= 1) {
                    readHolds.remove();
                    if (count <= 0)
                        throw unmatchedUnlockException();
                }
                --rh.count;
            }
            for (;;) {
                int c = getState();
                int nextc = c - SHARED_UNIT;
                if (compareAndSetState(c, nextc))
                    // Releasing the read lock has no effect on readers,
                    // but it may allow waiting writers to proceed if
                    // both read and write locks are now free.
                    return nextc == 0;
            }
        }
    

    对于writeLock,因为写锁是排他的,所以更改状态(写锁数量)就行了,因为锁的可重入性,所以状态值也可能是任意值:

        /*
         * Note that tryRelease and tryAcquire can be called by
         * Conditions. So it is possible that their arguments contain
         * both read and write holds that are all released during a
         * condition wait and re-established in tryAcquire.
         */
        @ReservedStackAccess
        protected final boolean tryRelease(int releases) {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            int nextc = getState() - releases;
            boolean free = exclusiveCount(nextc) == 0;
            if (free)
                setExclusiveOwnerThread(null);
            setState(nextc);
            return free;
        }
    
        @ReservedStackAccess
        protected final boolean tryAcquire(int acquires) {
            /*
             * Walkthrough:
             * 1. If read count nonzero or write count nonzero
             *    and owner is a different thread, fail.
             * 2. If count would saturate, fail. (This can only
             *    happen if count is already nonzero.)
             * 3. Otherwise, this thread is eligible for lock if
             *    it is either a reentrant acquire or
             *    queue policy allows it. If so, update state
             *    and set owner.
             */
            Thread current = Thread.currentThread();
            int c = getState();
            int w = exclusiveCount(c);
            if (c != 0) {
                // (Note: if c != 0 and w == 0 then shared count != 0)
                //  // c!=0,w==0,说明读锁存在 
                if (w == 0 || current != getExclusiveOwnerThread())
                    return false;
                if (w + exclusiveCount(acquires) > MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                // Reentrant acquire
                setState(c + acquires);
                return true;
            }
            if (writerShouldBlock() ||
                !compareAndSetState(c, c + acquires))
                return false;
            setExclusiveOwnerThread(current);
            return true;
        }
      }
    
    4、其他

    除了上面的基础讲解,ReentrantReadWriteLock还有一些其他的特性:

    1、公平锁与非公平锁(公平模式下锁的申请都必须按照AQS锁等待队列先进先出,非公平下可插队)
    2、如果1个线程获得了读锁,那么它不能同时再获得写锁,这个就是所谓的“锁升级”,读锁升级到写锁可能会造成死锁,所以是不允许的;如果1个线程获得了写锁,那么不允许其他线程再获得读锁和写锁,但是它自己可以获得读锁,就是所谓的“锁降级”

    相关文章

      网友评论

          本文标题:锁性能提升——ReadWriteLock

          本文链接:https://www.haomeiwen.com/subject/qvwqyftx.html