美文网首页
Typora测试

Typora测试

作者: 675744ec12ee | 来源:发表于2018-04-07 14:57 被阅读0次

    Abstract

    格式ctrl+B,I,U

    typora typora typora <u>typora</u>

    [图片上传失败...(image-c53b43-1523084257039)]

    <center>图1. 测试图片</center>

    插入表格ctrl+T

    1 2 3
    a 1 4
    b 3 1
    c 2 1

    一段matlab代码

    %find the Linear system's response by state-space method 
    function Xt = findResponse(K,M,C,dt,U,X0)
    nd = size(M,1); N = max(size(U));
    B = eye(nd);              %外荷载作用的位置
    Ac = [zeros(nd),eye(nd); -inv(M)*K, -inv(M)*C];
    Bc = [zeros(nd);inv(M)*B];
    

    1. Introduction

    2. Conventional SOD method

    2.1 sod theory

    数学证明:

    • 证:取(1)的逆 $\Psi^{-1} (XXT){-1} \Psi^{-T} = \Sigma_q^{-1}$

      并右乘(2)得$\Psi^{-1} (XXT){-1} (VV^T)\Psi = Sigma_q^{-1}\Sigma_\dot{q}=\Lambda_{xv}$

      移项得$(VV^T)\Psi =XX^T \Psi\Lambda_{xv}$

      两边除以$N-1$即$R_{v}\Psi =R_{x} \Psi\Lambda_{xv}$,证毕。

    2.2 sod for damped and noise contaminated signals

    2.3 sod for $m\lt n$

    由于SOD倾向于提取出能量较大模态坐标振动,假设前m阶响应能量较大, 设$\Sigma_q$的前m行m列为$\hat{\Sigma}q$, 后n-m行n-m列为$\check{\Sigma}q$
    $XX^T = \Phi
    {m \times m} \hat{\Sigma}q \Phi{m \times m}^T+\Phi
    {m \times (n-m)} \check{\Sigma}q \Phi{m \times (n-m)}^T$

    2.4 sod for $m\gt n$

    3. SOD with decomposed signals

    相关文章

      网友评论

          本文标题:Typora测试

          本文链接:https://www.haomeiwen.com/subject/qwdyhftx.html