upset-plot
UpSet与传统方法(即维恩图)相比,UpSet 图提供了一种可视化多个集合的交集的有效方法。通过R中的UpSetR 包中实现。在这里,我们使用ComplexHeatmap 包重新实现了 UpSet 图,并进行了一些改进。
8.1 输入数据
为了表示多个集合,变量可以表示为:
- 一个集合列表,其中每个集合都是一个向量,例如:
list(set1 = c("a", "b", "c"),
set2 = c("b", "c", "d", "e"),
...)
- 一个二进制矩阵/数据框,其中行是元素,列是集合,例如:
set1 set2 set3
h 1 1 1
t 1 0 1
j 1 0 0
u 1 0 1
w 1 0 0
...
例如,在矩阵中的t
行表示:t
在集合set1 中,不在集合set2 中,在集合set3 中。(只有在该矩阵是逻辑矩阵时才有效)
如果变量是数据框,则只使用二进制列(仅包含 0 和 1)和逻辑列。
两种格式都可以用于制作 UpSet 图,用户仍然可以使用 list_to_matrix()
从列表到二进制矩阵的转换。
lt = list(set1 = c("a", "b", "c"),
set2 = c("b", "c", "d", "e"))
list_to_matrix(lt)
## set1 set2
## a 1 0
## b 1 1
## c 1 1
## d 0 1
## e 0 1
您还可以在list_to_matrix()
下位置设置通用集:
list_to_matrix(lt, universal = letters[1:10])
## set1 set2
## a 1 0
## b 1 1
## c 1 1
## d 0 1
## e 0 1
## f 0 0
## g 0 0
## h 0 0
## i 0 0
## j 0 0
如果全集没有完全覆盖输入集,那些不在全集中的元素将被删除:
list_to_matrix(lt, universal = letters[1:4])
## set1 set2
## a 1 0
## b 1 1
## c 1 1
## d 0 1
- 该集合可以是基因组区间,那么它只能表示为
GRanges
/IRanges
对象的列表。
list(set1 = GRanges(...),
set2 = GRanges(...),
...)
8.2 upset模式
例如,对于三个集合(A,B,C),选择在或不在集合中的元素的所有组合编码如下:
A B C
1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1
1 表示选择该集合,0 表示不选择该集合。例如,1 1 0
意味着选择集合 A、B 而不选择集合 C。注意没有0 0 0
,因为这里的背景集合不感兴趣。在本节的以下部分,我们将A、B和C称为集合,将每个组合称为组合集。整个二元矩阵称为组合矩阵。
UpSet 图将每个组合集的大小可视化。有了每个组合集的二进制代码,接下来我们需要定义如何计算该组合集的大小。共有三种模式:
-
distinct
模式: 1 表示在该集合中,0 表示不在该集合中,然后1 1 0
表示A和B是集合元素,而C不是集合中的元素(setdiff(intersect(A, B), C)
) 。在这种模式下,七个组合集就可以看成维恩图中的七个分区,它们是相互排斥的。 -
intersect
模式: 1 表示在该集合中,不考虑0,然后1 1 0
表示A和B是集合元素,它们也可以在或不在C中(intersect(A, B)
)。在此模式下,七个组合集可以重叠。 -
union
模式: 1 表示在该集合中,不考虑0。当有多个1时,关系为OR。然后,1 1 0
表示A或B集合中的元素,它们也可以在或不在 C (union(A, B)
) 中。在此模式下,七个组合集可以重叠。
三种模式如下图所示:

8.3 生成组合矩阵
该make_comb_mat()
函数生成组合矩阵并计算集合和组合集合的大小。输入可以是单个变量或名称-值对:
set.seed(123)
lt = list(a = sample(letters, 5),
b = sample(letters, 10),
c = sample(letters, 15))
m1 = make_comb_mat(lt)
m1
## A combination matrix with 3 sets and 7 combinations.
## ranges of combination set size: c(1, 8).
## mode for the combination size: distinct.
## sets are on rows.
##
## Combination sets are:
## a b c code size
## x x x 111 2
## x x 110 1
## x x 101 1
## x x 011 4
## x 100 1
## x 010 3
## x 001 8
##
## Sets are:
## set size
## a 5
## b 10
## c 15
m2 = make_comb_mat(a = lt$a, b = lt$b, c = lt$c)
m3 = make_comb_mat(list_to_matrix(lt))
m1
,m2
和m3
结果是相同的。
模式由mode
参数控制:
m1 = make_comb_mat(lt) # the default mode is `distinct`
m2 = make_comb_mat(lt, mode = "intersect")
m3 = make_comb_mat(lt, mode = "union")
不同模式下的 UpSet 图将在后面演示。
当集合过多时,可以通过集合大小对集合进行预过滤(min_set_size
和top_n_sets
)。min_set_size
控制集合的最小大小,top_n_sets
控制具有最大大小的顶部集合的数量。
m1 = make_comb_mat(lt, min_set_size = 6)
m2 = make_comb_mat(lt, top_n_sets = 2)
集合的子集会影响组合集大小的计算,这就是为什么需要在组合矩阵生成步骤对其进行控制。组合集的子集可以直接通过对矩阵进行子集来进行:
m = make_comb_mat(lt)
m[1:4]
## A combination matrix with 3 sets and 4 combinations.
## ranges of combination set size: c(1, 4).
## mode for the combination size: distinct.
## sets are on rows.
##
## Combination sets are:
## a b c code size
## x x x 111 2
## x x 110 1
## x x 101 1
## x x 011 4
##
## Sets are:
## set size
## a 5
## b 10
## c 15
make_comb_mat()
还允许指定全集,以便还考虑包含不属于任何集合的元素的补集。
m = make_comb_mat(lt, universal_set = letters)
m
## A combination matrix with 3 sets and 8 combinations.
## ranges of combination set size: c(1, 8).
## mode for the combination size: distinct.
## sets are on rows.
##
## Combination sets are:
## a b c code size
## x x x 111 2
## x x 110 1
## x x 101 1
## x x 011 4
## x 100 1
## x 010 3
## x 001 8
## 000 6
##
## Sets are:
## set size
## a 5
## b 10
## c 15
## complement 6
全集可以小于所有集合的并集,那么对于每个集合,只考虑与全集的交集。
m = make_comb_mat(lt, universal_set = letters[1:10])
m
## A combination matrix with 3 sets and 5 combinations.
## ranges of combination set size: c(1, 3).
## mode for the combination size: distinct.
## sets are on rows.
##
## Combination sets are:
## a b c code size
## x x 110 1
## x x 101 1
## x x 011 2
## x 001 3
## 000 3
##
## Sets are:
## set size
## a 2
## b 3
## c 6
## complement 3
如果您已经知道补码的大小,则可以直接设置 complement_size
参数。
m = make_comb_mat(lt, complement_size = 5)
m
## A combination matrix with 3 sets and 8 combinations.
## ranges of combination set size: c(1, 8).
## mode for the combination size: distinct.
## sets are on rows.
##
## Combination sets are:
## a b c code size
## x x x 111 2
## x x 110 1
## x x 101 1
## x x 011 4
## x 100 1
## x 010 3
## x 001 8
## 000 5
##
## Sets are:
## set size
## a 5
## b 10
## c 15
## complement 5
当输入的矩阵不属于任何集合的元素时,这些元素被视为补集。
x = list_to_matrix(lt, universal_set = letters)
m = make_comb_mat(x)
m
## A combination matrix with 3 sets and 8 combinations.
## ranges of combination set size: c(1, 8).
## mode for the combination size: distinct.
## sets are on rows.
##
## Combination sets are:
## a b c code size
## x x x 111 2
## x x 110 1
## x x 101 1
## x x 011 4
## x 100 1
## x 010 3
## x 001 8
## 000 6
##
## Sets are:
## set size
## a 5
## b 10
## c 15
## complement 6
接下来我们演示第二个示例,其中集合是基因组区域。 当集合是基因组区域时,大小计算为每个集合中区域宽度的总和(也就是指碱基对的总数)。
library(circlize)
library(GenomicRanges)
lt2 = lapply(1:4, function(i) generateRandomBed())
lt2 = lapply(lt2, function(df) GRanges(seqnames = df[, 1],
ranges = IRanges(df[, 2], df[, 3])))
names(lt2) = letters[1:4]
m2 = make_comb_mat(lt2)
m2
## A combination matrix with 4 sets and 15 combinations.
## ranges of combination set size: c(184941701, 199900416).
## mode for the combination size: distinct.
## sets are on rows.
##
## Top 8 combination sets are:
## a b c d code size
## x x 0011 199900416
## x 1000 199756519
## x x x 1011 198735008
## x x x x 1111 197341532
## x x x 1110 197137160
## x x x 1101 194569926
## x x 1001 194462988
## x x 1010 192670258
##
## Sets are:
## set size
## a 1566783009
## b 1535968265
## c 1560549760
## d 1552480645
我们不建议将两组基因组区域的交集用于区域数。有两个原因:
1. 取值不对称,即set1中测得的相交区域数并不总是与set2中测得的相交区域数相同,因此很难为set1和 set2之间的交集赋值;
2. 如果 set1 中的一个长区域与 set2 中的另一个长区域重叠,但只有几个碱基对,那么说这两个区域在两组中是常见的是否有意义?
通用集也适用于作为基因组区域的集合。
8.4 upset实用功能
make_comb_mat()
返回一个矩阵,也在comb_mat
类中。有一些实用函数可以应用于这个comb_mat
对象:
-
set_name()
: 集合名称。 -
comb_name()
: 组合集名称。组合集的名称被格式化为一串二进制位。例如对于三组A , B , C,名称为“101”的组合集合对应于选择集合 A,不选择集合B和选择集合C。 -
set_size()
: 设置的大小。 -
comb_size()
:组合套装尺寸。 -
comb_degree()
:组合集的度数是选择的集数。 -
t()
:转置组合矩阵。默认情况下make_comb_mat()
生成一个矩阵,其中集合在行上,组合集在列上,它们在 UpSet 图上也是如此。通过对组合矩阵进行转置,可以在 UpSet 图上切换集合和组合集合的位置。 -
extract_comb()
:提取指定组合集中的元素。用法将在后面解释。 - 用于对矩阵进行子集化的函数。
快速示例是:
m = make_comb_mat(lt)
set_name(m)
## [1] "a" "b" "c"
comb_name(m)
## [1] "111" "110" "101" "011" "100" "010" "001"
set_size(m)
## a b c
## 5 10 15
comb_size(m)
## 111 110 101 011 100 010 001
## 2 1 1 4 1 3 8
comb_degree(m)
## 111 110 101 011 100 010 001
## 3 2 2 2 1 1 1
t(m)
## A combination matrix with 3 sets and 7 combinations.
## ranges of combination set size: c(1, 8).
## mode for the combination size: distinct.
## sets are on columns
##
## Combination sets are:
## a b c code size
## x x x 111 2
## x x 110 1
## x x 101 1
## x x 011 4
## x 100 1
## x 010 3
## x 001 8
##
## Sets are:
## set size
## a 5
## b 10
## c 15
对于extract_comb()
的使用,有效的组合集名称应该是comb_name()
。请注意,组合集中的元素取决于 make_comb_mat()
中设置的“mode”。
extract_comb(m, "101")
## [1] "j"
以及作为基因组区域的集合的示例:
# `lt2` was generated in the previous section
m2 = make_comb_mat(lt2)
set_size(m2)
## a b c d
## 1566783009 1535968265 1560549760 1552480645
comb_size(m2)
## 1111 1110 1101 1011 0111 1100 1010 1001
## 197341532 197137160 194569926 198735008 191312455 192109618 192670258 194462988
## 0110 0101 0011 1000 0100 0010 0001
## 191359036 184941701 199900416 199756519 187196837 192093895 191216619
现在extract_comb()
返回相应组合集中的基因组区域。
extract_comb(m2, "1010")
## GRanges object with 5063 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] chr1 255644-258083 *
## [2] chr1 306114-308971 *
## [3] chr1 1267493-1360170 *
## [4] chr1 2661311-2665736 *
## [5] chr1 3020553-3030645 *
## ... ... ... ...
## [5059] chrY 56286079-56286864 *
## [5060] chrY 57049541-57078332 *
## [5061] chrY 58691055-58699756 *
## [5062] chrY 58705675-58716954 *
## [5063] chrY 58765097-58776696 *
## -------
## seqinfo: 24 sequences from an unspecified genome; no seqlengths
使用comb_size()
和comb_degree()
,我们可以将组合矩阵过滤为:
m = make_comb_mat(lt)
# combination set size >= 4
m[comb_size(m) >= 4]
## A combination matrix with 3 sets and 2 combinations.
## ranges of combination set size: c(4, 8).
## mode for the combination size: distinct.
## sets are on rows.
##
## Combination sets are:
## a b c code size
## x x 011 4
## x 001 8
##
## Sets are:
## set size
## a 5
## b 10
## c 15
# combination set degree == 2
m[comb_degree(m) == 2]
## A combination matrix with 3 sets and 3 combinations.
## ranges of combination set size: c(1, 4).
## mode for the combination size: distinct.
## sets are on rows.
##
## Combination sets are:
## a b c code size
## x x 110 1
## x x 101 1
## x x 011 4
##
## Sets are:
## set size
## a 5
## b 10
## c 15
对于补集,这个特殊组合集的名称仅由零组成。
m2 = make_comb_mat(lt, universal_set = letters)
comb_name(m2) # see the first element
## [1] "111" "110" "101" "011" "100" "010" "001" "000"
comb_degree(m2)
## 111 110 101 011 100 010 001 000
## 3 2 2 2 1 1 1 0
如果在make_comb_mat()
中设置universal_set
,extract_comb()
则可以应用于补集。
m2 = make_comb_mat(lt, universal_set = letters)
extract_comb(m2, "000")
## [1] "a" "b" "f" "p" "u" "z"
m2 = make_comb_mat(lt, universal_set = letters[1:10])
extract_comb(m2, "000")
## [1] "a" "b" "f"
当设置universal_set
,extract_comb()
也适用于基因组区域集。
在前面的例子中,我们演示了使用“一维索引”,例如:
m[comb_degree(m) == 2]
由于组合矩阵本质上是一个矩阵,因此索引也可以应用于两个维度。在默认设置中,集合在行上,组合集在列上,因此,矩阵第一维上的索引对应于集合,第二维上的索引对应于组合集:
# by set names
m[c("a", "b", "c"), ]
# by nummeric indicies
m[3:1, ]
可以通过以下方式将新的空集添加到组合矩阵中:
# `d` is the new empty set
m[c("a", "b", "c", "d"), ]
注意当指定的索引没有覆盖原始组合矩阵中的所有非空集合时,会重新计算组合矩阵,因为它会影响组合集合中的值:
# if `c` is a non-empty set
m[c("a", "b"),]
与组合集对应的第二维上的子集类似:
# reorder
m[, 5:1]
# take a subset
m[, 1:3]
# by charater indices
m[, c("110", "101", "011")]
也可以通过设置字符索引来添加新的空组合集:
m[m, c(comb_name(m), "100")]
只有当集合索引覆盖所有非空集合时,才能同时在两个维度上设置索引:
m[3:1, 5:1]
# this will throw an error because `c` is a non-empty set
m[c("a", "b"), 5:1]
如果组合矩阵进行了转置,则需要切换矩阵的集索引和组合集索引的边距。
tm = t(m)
tm[reverse(comb_name(tm)), reverse(set_name(tm))]
如果仅将组合集的索引设置为一维,则它会自动适用于转置或未转置的两个矩阵:
m[1:5]
tm[1:5]
8.5 生成upset图
生成 UpSet 图非常简单,用户只需将组合矩阵发送到UpSet()
函数即可:
m = make_comb_mat(lt)
UpSet(m)

默认情况下,集合按大小排序,组合集合按度数(选择的集合数)排序。
订单由set_order
和控制comb_order
:
UpSet(m, set_order = c("a", "b", "c"), comb_order = order(comb_size(m)))

点的颜色、点的大小和线段的线宽由pt_size
、comb_col
和控制 lwd
。comb_col
是组合集对应的向量。在下面的代码中,由于comb_degree(m)
返回一个整数向量,我们只将它用作颜色向量的索引。
UpSet(m, pt_size = unit(5, "mm"), lwd = 3,
comb_col = c("red", "blue", "black")[comb_degree(m)])

背景颜色(代表集合的矩形和圆点没有被选中)由bg_col
、bg_pt_col
控制。bg_col
的长度可以是1或2。
UpSet(m, comb_col = "#0000FF", bg_col = "#F0F0FF", bg_pt_col = "#CCCCFF")

UpSet(m, comb_col = "#0000FF", bg_col = c("#F0F0FF", "#FFF0F0"), bg_pt_col = "#CCCCFF")

组合矩阵转置将集合切换为列,将组合集合切换为行。
UpSet(t(m))

正如我们所介绍的,如果对组合集进行子集化,也可以将矩阵的子集可视化:
UpSet(m[comb_size(m) >= 4])
UpSet(m[comb_degree(m) == 2])

以下比较了make_comb_mat()
中的不同模式:
m1 = make_comb_mat(lt) # the default mode is `distinct`
m2 = make_comb_mat(lt, mode = "intersect")
m3 = make_comb_mat(lt, mode = "union")
UpSet(m1)
UpSet(m2)
UpSet(m3)

对于包含补集的图,有一个额外的列显示此补集不与任何集重叠(所有点均为灰色)。
m2 = make_comb_mat(lt, universal_set = letters)
UpSet(m2)

请记住,如果您已经知道补集的大小,则可以直接通过make_comb_mat()
中的complement_size
参数分配它。
m2 = make_comb_mat(lt, complement_size = 10)
UpSet(m2)

对于全集小于所有集合的并集的情况:
m2 = make_comb_mat(lt, universal_set = letters[1:10])
UpSet(m2)

在某些情况下,您可能有补集但不想显示它,尤其是当输入为make_comb_mat()
已包含补集的矩阵时,您可以按组合度进行过滤。
x = list_to_matrix(lt, universal_set = letters)
m2 = make_comb_mat(x)
m2 = m2[comb_degree(m2) > 0]
UpSet(m2)

8.6 UpSet 图作为热图
在 UpSet 图中,主要成分是组合矩阵,两侧是表示集合大小和组合集合的条形图,因此,将其实现为“热图”是非常简单的,其中热图是用点和段定义,两个条形图是由anno_barplot()
.
默认的顶部注释是:
HeatmapAnnotation("Intersection\nsize" = anno_barplot(comb_size(m),
border = FALSE, gp = gpar(fill = "black"), height = unit(3, "cm")),
annotation_name_side = "left", annotation_name_rot = 0)
此顶部注释被包裹在upset_top_annotation()
中,其中仅包含翻转顶部条形图注释。大多数参数 upset_top_annotation()
直接转到anno_barplot()
,例如设置条形的颜色:
UpSet(m, top_annotation = upset_top_annotation(m,
gp = gpar(col = comb_degree(m))))

控制数据范围和轴:
UpSet(m, top_annotation = upset_top_annotation(m,
ylim = c(0, 15),
bar_width = 1,
axis_param = list(side = "right", at = c(0, 5, 10, 15),
labels = c("zero", "five", "ten", "fifteen"))))

控制注释名称:
UpSet(m, top_annotation = upset_top_annotation(m,
annotation_name_rot = 90,
annotation_name_side = "right",
axis_param = list(side = "right")))

右注释的设置非常相似:
UpSet(m, right_annotation = upset_right_annotation(m,
ylim = c(0, 30),
gp = gpar(fill = "green"),
annotation_name_side = "top",
axis_param = list(side = "top")))

upset_top_annotation()
和upset_right_annotation()
可以自动识别集合是在行上还是列上。
upset_top_annotation()
和upset_right_annotation()
只包含一个条形图注释。如果用户想要添加更多的注释,则需要手动构造一个HeatmapAnnotation
具有多个注释的对象。
要在顶部添加更多注释:
UpSet(m, top_annotation = HeatmapAnnotation(
degree = as.character(comb_degree(m)),
"Intersection\nsize" = anno_barplot(comb_size(m),
border = FALSE,
gp = gpar(fill = "black"),
height = unit(2, "cm")
),
annotation_name_side = "left",
annotation_name_rot = 0))

要在右侧添加更多注释:
UpSet(m, right_annotation = rowAnnotation(
"Set size" = anno_barplot(set_size(m),
border = FALSE,
gp = gpar(fill = "black"),
width = unit(2, "cm")
),
group = c("group1", "group1", "group2")))

将右侧注释移动到组合矩阵的左侧,请使用upset_left_annotation()
:
UpSet(m, left_annotation = upset_left_annotation(m))

在条形顶部添加数字:
UpSet(m, top_annotation = upset_top_annotation(m, add_numbers = TRUE),
right_annotation = upset_right_annotation(m, add_numbers = TRUE))

返回的对象UpSet()
实际上是一个Heatmap
类对象,因此,您可以通过+
或%v%
将其添加到其他热图和注释中。
ht = UpSet(m)
class(ht)
## [1] "Heatmap"
## attr(,"package")
## [1] "ComplexHeatmap"
ht + Heatmap(1:3, name = "foo", width = unit(5, "mm")) +
rowAnnotation(bar = anno_points(1:3))

ht %v% Heatmap(rbind(1:7), name = "foo", row_names_side = "left",
height = unit(5, "mm")) %v%
HeatmapAnnotation(bar = anno_points(1:7),
annotation_name_side = "left")

添加多个 UpSet 图:
m1 = make_comb_mat(lt, mode = "distinct")
m2 = make_comb_mat(lt, mode = "intersect")
m3 = make_comb_mat(lt, mode = "union")
UpSet(m1, row_title = "distinct mode") %v%
UpSet(m2, row_title = "intersect mode") %v%
UpSet(m3, row_title = "union mode")

或者先将所有组合矩阵转置,然后水平相加:
m1 = make_comb_mat(lt, mode = "distinct")
m2 = make_comb_mat(lt, mode = "intersect")
m3 = make_comb_mat(lt, mode = "union")
UpSet(t(m1), column_title = "distinct mode") +
UpSet(t(m2), column_title = "intersect mode") +
UpSet(t(m3), column_title = "union mode")

三个组合矩阵实际上是相同的,将它们绘制三次是多余的。借助ComplexHeatmap包中的功能,我们可以直接添加三个条形图注释。
top_ha = HeatmapAnnotation(
"distict" = anno_barplot(comb_size(m1),
gp = gpar(fill = "black"), height = unit(2, "cm")),
"intersect" = anno_barplot(comb_size(m2),
gp = gpar(fill = "black"), height = unit(2, "cm")),
"union" = anno_barplot(comb_size(m3),
gp = gpar(fill = "black"), height = unit(2, "cm")),
gap = unit(2, "mm"), annotation_name_side = "left", annotation_name_rot = 0)
# the same for using m2 or m3
UpSet(m1, top_annotation = top_ha)

组合矩阵转置时类似:
right_ha = rowAnnotation(
"distict" = anno_barplot(comb_size(m1),
gp = gpar(fill = "black"), width = unit(2, "cm")),
"intersect" = anno_barplot(comb_size(m2),
gp = gpar(fill = "black"), width = unit(2, "cm")),
"union" = anno_barplot(comb_size(m3),
gp = gpar(fill = "black"), width = unit(2, "cm")),
gap = unit(2, "mm"), annotation_name_side = "bottom")
# the same for using m2 or m3
UpSet(t(m1), right_annotation = right_ha)

初始 UpSet 实现,组合集大小也绘制在条形图的顶部。这里我们不直接支持,但是可以通过decorate_annotation()
函数手动添加尺寸。请参阅以下示例:
ht = draw(UpSet(m))
od = column_order(ht)
cs = comb_size(m)
decorate_annotation("intersection_size", {
grid.text(cs[od], x = seq_along(cs), y = unit(cs[od], "native") + unit(2, "pt"),
default.units = "native", just = "bottom", gp = gpar(fontsize = 8))
})

我们不直接支持将组合集大小添加到绘图中的原因有几个:
1. 添加新文本意味着向函数添加几个新参数,例如图形参数的参数、旋转、位置、条形的边距,这将使功能变的重复。
2.需要正确计算barplot注释的ylim,让文字不超过注释区域。
3、使用decoration_annotation()
更灵活,不仅可以添加大小,还可以添加自定义文本。
8.7 电影数据集的例子
UpsetR 包还提供了一个movies
数据集,其中包含 3883 部电影的 17 个流派。首先加载数据集。
movies = read.csv(system.file("extdata", "movies.csv", package = "UpSetR"),
header = TRUE, sep = ";")
head(movies) # `make_comb_mat()` automatically ignores the first two columns
## Name ReleaseDate Action Adventure Children
## 1 Toy Story (1995) 1995 0 0 1
## 2 Jumanji (1995) 1995 0 1 1
## 3 Grumpier Old Men (1995) 1995 0 0 0
## 4 Waiting to Exhale (1995) 1995 0 0 0
## 5 Father of the Bride Part II (1995) 1995 0 0 0
## 6 Heat (1995) 1995 1 0 0
## Comedy Crime Documentary Drama Fantasy Noir Horror Musical Mystery Romance
## 1 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 1 0 0 0 0 0
## 3 1 0 0 0 0 0 0 0 0 1
## 4 1 0 0 1 0 0 0 0 0 0
## 5 1 0 0 0 0 0 0 0 0 0
## 6 0 1 0 0 0 0 0 0 0 0
## SciFi Thriller War Western AvgRating Watches
## 1 0 0 0 0 4.15 2077
## 2 0 0 0 0 3.20 701
## 3 0 0 0 0 3.02 478
## 4 0 0 0 0 2.73 170
## 5 0 0 0 0 3.01 296
## 6 0 1 0 0 3.88 940
要生成与此示例相同的 UpSet 图:
m = make_comb_mat(movies, top_n_sets = 6)
m
## A combination matrix with 6 sets and 39 combinations.
## ranges of combination set size: c(1, 1028).
## mode for the combination size: distinct.
## sets are on rows.
##
## Top 8 combination sets are:
## Action Comedy Drama Horror Romance Thriller code size
## x 001000 1028
## x 010000 698
## x 000100 216
## x 100000 206
## x 000001 183
## x x 011000 180
## x x 010010 160
## x x 001010 158
##
## Sets are:
## set size
## Action 503
## Comedy 1200
## Drama 1603
## Horror 343
## Romance 471
## Thriller 492
## complement 2
m = m[comb_degree(m) > 0]
UpSet(m)

以下代码使其看起来与原始图更相似。代码有点长,但大部分代码主要是自定义注释和行/列顺序。
ss = set_size(m)
cs = comb_size(m)
ht = UpSet(m,
set_order = order(ss),
comb_order = order(comb_degree(m), -cs),
top_annotation = HeatmapAnnotation(
"Genre Intersections" = anno_barplot(cs,
ylim = c(0, max(cs)*1.1),
border = FALSE,
gp = gpar(fill = "black"),
height = unit(4, "cm")
),
annotation_name_side = "left",
annotation_name_rot = 90),
left_annotation = rowAnnotation(
"Movies Per Genre" = anno_barplot(-ss,
baseline = 0,
axis_param = list(
at = c(0, -500, -1000, -1500),
labels = c(0, 500, 1000, 1500),
labels_rot = 0),
border = FALSE,
gp = gpar(fill = "black"),
width = unit(4, "cm")
),
set_name = anno_text(set_name(m),
location = 0.5,
just = "center",
width = max_text_width(set_name(m)) + unit(4, "mm"))
),
right_annotation = NULL,
show_row_names = FALSE)
ht = draw(ht)
od = column_order(ht)
decorate_annotation("Genre Intersections", {
grid.text(cs[od], x = seq_along(cs), y = unit(cs[od], "native") + unit(2, "pt"),
default.units = "native", just = c("left", "bottom"),
gp = gpar(fontsize = 6, col = "#404040"), rot = 45)
})

在movies
数据集中,还有一列AvgRating
给出了每部电影的评分,接下来我们根据评分将所有电影分为五组。
genre = c("Action", "Romance", "Horror", "Children", "SciFi", "Documentary")
rating = cut(movies$AvgRating, c(0, 1, 2, 3, 4, 5))
m_list = tapply(seq_len(nrow(movies)), rating, function(ind) {
m = make_comb_mat(movies[ind, genre, drop = FALSE])
m[comb_degree(m) > 0]
})
中的组合矩阵m_list
可能有不同的组合集:
sapply(m_list, comb_size)
## $`(0,1]`
## 010000 001000 000100 000001
## 1 2 1 1
##
## $`(1,2]`
## 101010 100110 110000 101000 100100 100010 001010 100000 010000 001000 000100
## 1 1 1 4 5 5 8 14 7 38 14
## 000010 000001
## 3 2
##
## $`(2,3]`
## 101010 110000 101000 100100 100010 010100 010010 001010 000110 100000 010000
## 4 8 2 6 35 3 1 27 7 126 99
## 001000 000100 000010 000001
## 142 77 27 9
##
## $`(3,4]`
## 110010 101010 100110 110000 101000 100010 011000 010100 010010 001100 001010
## 1 6 1 20 6 45 3 4 4 1 11
## 000110 100000 010000 001000 000100 000010 000001
## 5 176 276 82 122 66 87
##
## $`(4,5]`
## 110010 101010 110000 101000 100010 100000 010000 001000 000100 000010 000001
## 1 1 4 1 6 23 38 4 4 10 28
为了用 UpSet 图在多个组之间进行比较,我们需要对所有矩阵进行归一化,使它们具有相同的集合和相同的组合集。 normalize_comb_mat()
基本上将零添加到以前不存在的新组合集。
m_list = normalize_comb_mat(m_list)
sapply(m_list, comb_size)
## (0,1] (1,2] (2,3] (3,4] (4,5]
## 110001 0 1 0 1 0
## 100101 0 1 4 6 1
## 100011 0 0 0 1 1
## 110000 0 5 6 0 0
## 100100 0 4 2 6 1
## 100010 0 1 8 20 4
## 100001 0 5 35 45 6
## 010100 0 0 0 1 0
## 010010 0 0 3 4 0
## 010001 0 0 7 5 0
## 000110 0 0 0 3 0
## 000101 0 8 27 11 0
## 000011 0 0 1 4 0
## 100000 0 14 126 176 23
## 010000 1 14 77 122 4
## 001000 1 2 9 87 28
## 000100 2 38 142 82 4
## 000010 1 7 99 276 38
## 000001 0 3 27 66 10
我们计算两个条形图的范围:
max_set_size = max(sapply(m_list, set_size))
max_comb_size = max(sapply(m_list, comb_size))
最后,我们垂直添加五个 UpSet 图:
ht_list = NULL
for(i in seq_along(m_list)) {
ht_list = ht_list %v%
UpSet(m_list[[i]], row_title = paste0("rating in", names(m_list)[i]),
set_order = NULL, comb_order = NULL,
top_annotation = upset_top_annotation(m_list[[i]], ylim = c(0, max_comb_size)),
right_annotation = upset_right_annotation(m_list[[i]], ylim = c(0, max_set_size)))
}
ht_list

比较五个 UpSet 图后,我们可以看到大多数电影的评分在 2 到 4 之间。恐怖片的评分往往较低,而爱情片的评分往往较高。
除了直接比较组合集的大小之外,我们还可以将相对分数与完整集进行比较。在下面的代码中,我们删除了c(0, 1]
组,因为那里的电影数量太少。
m_list = m_list[-1]
max_set_size = max(sapply(m_list, set_size))
rel_comb_size = sapply(m_list, function(m) {
s = comb_size(m)
# because the combination matrix is generated under "distinct" mode
# the sum of `s` is the size of the full set
s/sum(s)
})
ht_list = NULL
for(i in seq_along(m_list)) {
ht_list = ht_list %v%
UpSet(m_list[[i]], row_title = paste0("rating in", names(m_list)[i]),
set_order = NULL, comb_order = NULL,
top_annotation = HeatmapAnnotation(
"Relative\nfraction" = anno_barplot(
rel_comb_size[, i],
ylim = c(0, 0.5),
gp = gpar(fill = "black"),
border = FALSE,
height = unit(2, "cm"),
),
annotation_name_side = "left",
annotation_name_rot = 0),
right_annotation = upset_right_annotation(m_list[[i]],
ylim = c(0, max_set_size))
)
}
ht_list

现在的趋势更加明显,恐怖片评分低,纪录片评分高。
接下来我们按年份划分电影:
year = floor(movies$ReleaseDate/10)*10
m_list = tapply(seq_len(nrow(movies)), year, function(ind) {
m = make_comb_mat(movies[ind, genre, drop = FALSE])
m[comb_degree(m) > 0]
})
m_list = normalize_comb_mat(m_list)
max_set_size = max(sapply(m_list, set_size))
max_comb_size = max(sapply(m_list, comb_size))
ht_list1 = NULL
for(i in 1:5) {
ht_list1 = ht_list1 %v%
UpSet(m_list[[i]], row_title = paste0(names(m_list)[i], "s"),
set_order = NULL, comb_order = NULL,
top_annotation = upset_top_annotation(m_list[[i]], ylim = c(0, max_comb_size),
height = unit(2, "cm")),
right_annotation = upset_right_annotation(m_list[[i]], ylim = c(0, max_set_size)))
}
ht_list2 = NULL
for(i in 6:10) {
ht_list2 = ht_list2 %v%
UpSet(m_list[[i]], row_title = paste0(names(m_list)[i], "s"),
set_order = NULL, comb_order = NULL,
top_annotation = upset_top_annotation(m_list[[i]], ylim = c(0, max_comb_size),
height = unit(2, "cm")),
right_annotation = upset_right_annotation(m_list[[i]], ylim = c(0, max_set_size)))
}
grid.newpage()
pushViewport(viewport(x = 0, width = 0.5, just = "left"))
draw(ht_list1, newpage = FALSE)
popViewport()
pushViewport(viewport(x = 0.5, width = 0.5, just = "left"))
draw(ht_list2, newpage = FALSE)
popViewport()

现在我们可以看到大部分电影都是 1990 年代制作的,两大类型是动作片和爱情片。
类似地,如果我们将顶部注释更改为完整集的相对分数(代码未显示):

最后,我们可以在 UpSet 图的右侧添加作为箱线图注释的每个组合集的年份、评级和观看次数的统计数据。
m = make_comb_mat(movies[, genre])
m = m[comb_degree(m) > 0]
comb_elements = lapply(comb_name(m), function(nm) extract_comb(m, nm))
years = lapply(comb_elements, function(ind) movies$ReleaseDate[ind])
rating = lapply(comb_elements, function(ind) movies$AvgRating[ind])
watches = lapply(comb_elements, function(ind) movies$Watches[ind])
UpSet(t(m)) + rowAnnotation(years = anno_boxplot(years),
rating = anno_boxplot(rating),
watches = anno_boxplot(watches),
gap = unit(2, "mm"))

我们可以看到“科幻+儿童”类型的电影制作时间很长,但收视率还不错。“动作+儿童”类型的电影收视率最低。
8.8 基因组区域示例
来自六个路线图样本的 H3K4me3 ChIP-seq 峰通过 UpSet 图进行可视化。这六个样本是:
首先读取文件并转换为GRanges
对象。
file_list = c(
"ESC" = "data/E016-H3K4me3.narrowPeak.gz",
"ES-deriv1" = "data/E004-H3K4me3.narrowPeak.gz",
"ES-deriv2" = "data/E006-H3K4me3.narrowPeak.gz",
"Brain" = "data/E071-H3K4me3.narrowPeak.gz",
"Muscle" = "data/E100-H3K4me3.narrowPeak.gz",
"Heart" = "data/E104-H3K4me3.narrowPeak.gz"
)
library(GenomicRanges)
peak_list = lapply(file_list, function(f) {
df = read.table(f)
GRanges(seqnames = df[, 1], ranges = IRanges(df[, 2], df [, 3]))
})
制作组合矩阵。现在注意集合和组合集合的大小是总碱基对或区域宽度的总和。我们只保留超过 500kb 的组合集。
m = make_comb_mat(peak_list)
m = m[comb_size(m) > 500000]
UpSet(m)

我们可以通过设置axis_param
很好地格式化轴标签:
UpSet(m,
top_annotation = upset_top_annotation(
m,
axis_param = list(at = c(0, 1e7, 2e7),
labels = c("0Mb", "10Mb", "20Mb")),
height = unit(4, "cm")
),
right_annotation = upset_right_annotation(
m,
axis_param = list(at = c(0, 2e7, 4e7, 6e7),
labels = c("0Mb", "20Mb", "40Mb", "60Mb"),
labels_rot = 0),
width = unit(4, "cm")
))

对于每组基因组区域,我们可以将更多信息与其关联,例如平均甲基化或与最近 TSS 的距离。
subgroup = c("ESC" = "group1",
"ES-deriv1" = "group1",
"ES-deriv2" = "group1",
"Brain" = "group2",
"Muscle" = "group2",
"Heart" = "group2"
)
comb_sets = lapply(comb_name(m), function(nm) extract_comb(m, nm))
comb_sets = lapply(comb_sets, function(gr) {
# we just randomly generate dist_to_tss and mean_meth
gr$dist_to_tss = abs(rnorm(length(gr), mean = runif(1, min = 500, max = 2000), sd = 1000))
gr$mean_meth = abs(rnorm(length(gr), mean = 0.1, sd = 0.1))
gr
})
UpSet(m,
top_annotation = upset_top_annotation(
m,
axis_param = list(at = c(0, 1e7, 2e7),
labels = c("0Mb", "10Mb", "20Mb")),
height = unit(4, "cm")
),
right_annotation = upset_right_annotation(
m,
axis_param = list(at = c(0, 2e7, 4e7, 6e7),
labels = c("0Mb", "20Mb", "40Mb", "60Mb"),
labels_rot = 0),
width = unit(4, "cm")
),
left_annotation = rowAnnotation(group = subgroup[set_name(m)], show_annotation_name = FALSE),
bottom_annotation = HeatmapAnnotation(
dist_to_tss = anno_boxplot(lapply(comb_sets, function(gr) gr$dist_to_tss), outline = FALSE),
mean_meth = sapply(comb_sets, function(gr) mean(gr$mean_meth)),
annotation_name_side = "left"
)
)

网友评论