大师兄的数据结构学习笔记(十): 伸展树
大师兄的数据结构学习笔记(十二): 红黑树
一、关于B树
1. 分级存储
- 在计算机中,为了满足容量和访问速度的需求,通常用内存(高速度)和硬盘(大容量)进行分级存储。
- 内存的访问速度大致为纳秒(ns)而硬盘位毫秒(ms),相差5-6个数量级, 应尽可能减少对外存(硬盘)的访问。
2. 多路搜索树
- 外部存储器具备的另一特性:适合批量式访问,即读取物理地址连续的1000个字节和读取几个字节没区别。
- 所以,应使用时间成本相对较低的多次内存操作,替代时间成本相对较高的单次外存(硬盘)操作。
- 为此,我们需要改造二叉搜索树为多路搜索树,让子树大于或等于两个,让树由"瘦高"变"矮胖"。
- 因此,在多路搜索树中,各节点与其左、右孩子合并为大节点, 节点到左、右孩子的分支转化为大节点的内部搜索。
- 多路搜索树在查找等搜索时,搜索每下降一层,都以大节点为单位从外存(硬盘)读取一组关键码。
3. B树
- 所谓m阶的B树(B-tree),即m路的多路搜索树。
- 每个节点最多有m个孩子。
- 除了根节点和叶子节点外,其它每个节点至少有个孩子。
- 若根节点不是叶子节点,则至少有2个孩子。
- 所有叶子节点都在同一层,且不包含其它关键字信息
- 每个非终端节点包含n个关键字信息(P0,P1,…Pn, k1,…kn)
- 关键字的个数n满足:
- ki(i=1,…n)为关键字,且关键字升序排序。
- Pi(i=1,…n)为指向子树根节点的指针。P(i-1)指向的子树的所有节点关键字均小于ki,但都大于k(i-1)
- B树的最低搜索效率是
二、实现B树
1. 节点结构
template<class T>
struct Node
{
int count; //统计
T* key; //关键值列表
Node** child; //子节点的列表
bool leaf; //是否为叶结点
};
2. BTree类
template<class T>
class BTree
{
public:
BTree(); //构造函数
~BTree(); //析构函数
bool Insert(int key); //插入节点
bool Delete(int key); //删除节点
void Display(); //打印树
private:
Node<T>* search(Node<T>* pNode, int key); //查找节点
Node<T>* AllocateNode(); //重置节点
void SplitChild(Node<T>* pParent, Node<T>* pChild, int index);
Node<T>* unionChild(Node<T>* pParent, Node<T>* pCLeft, Node<T>* pCRright, int index); //合并大节点
void InsertNonfull(Node<T>* pNode, int key);
int Max(Node<T>* pNode); //最大结点
int min(Node<T>* pNode); //最小结点
bool DeleteNonHalf(Node<T>* pNode, int key);
void DellocateNode(Node<T>* pNode);
void DeleteTree(Node<T>* pNode);
void print(Node<T>* pNode);
private:
Node<T>* root; //根节点
int M; // 度数
};
3. 方法实现
template<class T>
//构造函数
BTree<T>::BTree() :root(nullptr), M(4)
{
};
template<class T>
//析构函数
BTree<T>::~BTree()
{
DeleteTree(root);
delete root;
};
template<class T>
//插入节点
bool BTree<T>::Insert(int key)
{
Node<T>* r = root;
if (!r)
{
r = AllocateNode();
r->leaf = true;
r->count = 0;
root = r;
}
if (r && r->count == (2 * M - 1))
{
Node<T>* s = AllocateNode();
root = s;
s->leaf = false;
s->count = 0;
s->child[1] = r;
SplitChild(s, r, 1);
InsertNonfull(s, key);
}
else
{
InsertNonfull(r, key);
}
return true;
};
template<class T>
//删除节点
bool BTree<T>::Delete(int key)
{
return DeleteNonHalf(root, key);
};
template<class T>
//删除节点
void BTree<T>::Display()
{
print(root);
};
template<class T>
// 查找节点
Node<T>* BTree<T>::search(Node<T>* pNode, int key)
{
int i = 1;
while (i <= pNode->count && key > pNode->key[i])
{
i++;
}
if (i < pNode->count && key == pNode->key[i])
return pNode->child[i];
if (pNode->leaf)
return nullptr;
else
return search(pNode->child[i], key);
}
template<class T>
// 重置节点
Node<T>* BTree<T>::AllocateNode()
{
Node<T>* pTemp = new Node<T>;
pTemp->key = new T[2 * M];
pTemp->child = new Node<T>* [2 * M + 1];
for (int i = 0; i < 2 * M; i++)
{
pTemp->key[i] = 0;
pTemp->child[i] = nullptr;
}
pTemp->child[2 * M] = nullptr;
return pTemp;
}
template<class T>
void BTree<T>::SplitChild(Node<T>* pParent, Node<T>* pChild, int index)
{
Node<T>* pChildEx = AllocateNode();
pChildEx->leaf = pChild->leaf;
pChildEx->count = M - 1;
for (int j = 1; j < M; j++)
{
pChildEx->key[j] = pChild->key[j + M];
}
if (!pChild->leaf)
{
for (int j = 1; j <= M; j++)
pChildEx->child[j] = pChild->child[j + M];
}
pChild->count = M - 1;
for (int j = pParent->count + 1; j > index; j--)
{
pParent->child[j + 1] = pParent->child[j];
}
pParent->child[index + 1] = pChildEx;
for (int j = pParent->count + 1; j >= index; j--)
{
pParent->key[j + 1] = pParent->key[j];
}
pParent->key[index] = pChild->key[M];
pParent->count++;
}
template<class T>
//合并大节点
Node<T>* BTree<T>::unionChild(Node<T>* pParent, Node<T>* pCLeft, Node<T>* pCRight, int index)
{
for (int i = 1; i < M; i++)
{
pCLeft->key[M + i] = pCRight->key[i];
}
pCLeft->key[M] = pParent->key[index];
for (int i = 1; i <= M; i++)
{
pCLeft->child[M + i] = pCRight->child[i];
}
pCLeft->count = 2 * M - 1;
for (int i = index; i < pParent->count; i++)
{
pParent->key[i] = pParent->key[i + 1];
}
for (int i = index + 1; i <= pParent->count; i++)
{
pParent->child[i] = pParent->child(i + 1);
}
pParent->count--;
DellocateNode(pCRight);
if (pParent->count == 0)
{
DellocateNode(root);
root = pCLeft;
}
return pCLeft;
}
template<class T>
void BTree<T>::InsertNonfull(Node<T>* pNode, int key)
{
int i = pNode->count;
if (pNode->leaf)
{
while (i >= 1 && key < pNode->key[i])
{
pNode->key[i + 1] = pNode->key[i];
i--;
}
pNode->key[i + 1] = key;
pNode->count++;
}
else
{
while (i >= 1 && key < pNode->key[i])
{
i--;
}
i++;
if (pNode->child[i]->count == (2 * M - 1))
{
SplitChild(pNode, pNode->child[i], i);
if (key > pNode->key[i])
i++;
}
InsertNonfull(pNode->child[i], key);
}
}
template<class T>
// 最大结点
int BTree<T>::Max(Node<T>* pNode)
{
while (!pNode->leaf)
{
pNode = pNode->child[pNode->count + 1];
}
return pNode->key[pNode->count];
}
template<class T>
//最小结点
int BTree<T>::min(Node<T>* pNode)
{
while (!pNode->leaf)
{
pNode = pNode->child[1];
}
return pNode->key[1];
}
template<class T>
bool BTree<T>::DeleteNonHalf(Node<T>* pNode, int key)
{
int i = 1;
while (i <= pNode->count && key > pNode->key[i])
i++;
if (pNode->leaf) //如果是叶结点
{
if (i <= pNode->count && key == pNode->key[i])
{
for (int j = i; j < pNode->count; j++)
{
pNode->key[j] = pNode->key[j + 1];
}
pNode->count--;
return true;
}
else
{
return false;
}
}
if (i <= pNode->count && key == pNode->key[i]) //如果是子结点
{
if (pNode->child[i]->count >= M)
{
key = Max(pNode->child[i]);
pNode->key[i] = key;
return DeleteNonHalf(pNode->child[i], key);
}
else if (pNode->child[i + 1]->count >= M)
{
key = Min(pNode->child[i + 1]);
pNode->key[i] = key;
return DeleteNonHalf(pNode->child[i + 1], key);
}
else
{
Node<T> pChild = unionChild(pNode, pNode->child[i], pNode->child[i + 1], i);
return DeleteNonHalf(pChild, key);
}
}
else if (pNode->child[i]->count == M - 1) //根节点
{
if (i > 1 && pNode->child[i - 1]->count >= M)
{
Node<T>* pMidNode = pNode->child[i];
Node<T>* pPreNode = pNode->child[i - 1];
int preNode_keyCount = pPreNode->count;
for (int j = pMidNode->count + 1; j > 1; j--)
{
pMidNode->key[j] = pMidNode->key[j - 1];
}
pMidNode->key[1] = pNode->key[i - 1];
for (int j = pMidNode->count + 2; j > 1; j--)
{
pMidNode->child[j] = pMidNode->child[j - 1];
}
pMidNode->child[1] = pPreNode->child[preNode_keyCount + 1];
pMidNode->count++;
pNode->key[i - 1] = pPreNode->key[preNode_keyCount];
pPreNode->key[preNode_keyCount] = 0;
pPreNode->key[preNode_keyCount + 1] = nullptr;
pPreNode->count--;
return DeleteNonHalf(pMidNode, key);
}
else if (i <= pNode->count && pNode->child[i + 1]->count >= M)
{
Node<T>* pMidNode = pNode->child[i];
Node<T>* pNextNode = pNode->child[i + 1];
int nextNode_keyCount = pNextNode->count;
int midNode_keyCount = pMidNode->count;
pMidNode->key[midNode_keyCount + 1] = pNode->key[i];
pMidNode->child[midNode_keyCount + 2] = pNextNode->child[1];
pMidNode->count++;
pNode->key[i] = pNextNode->key[i];
for (int j = 1; j < nextNode_keyCount; j++)
{
pNextNode->key[j] = pNextNode->key[j + 1];
}
for (int j = 1; j < nextNode_keyCount;j++)
{
pNextNode->child[j] = pNextNode->child[j + 1];
}
pNextNode->count--;
return DeleteNonHalf(pMidNode, key);
}
else
{
if (i > pNode->count)
{
i--;
}
Node<T>* pChild = unionChild(pNode, pNode->child[i], pNode->child[i + 1], i);
return DeleteNonHalf(pChild, key);
}
}
return DeleteNonHalf(pNode->child[i], key);
}
template<class T>
void BTree<T>::DellocateNode(Node<T>* pNode)
{
delete[] pNode->key;
delete[] pNode->child;
delete pNode;
}
template<class T>
void BTree<T>::DeleteTree(Node<T>* pNode)
{
if (pNode->leaf)
{
delete[] pNode->key;
delete[] pNode->child;
}
else
{
for (int i = 1; i <= pNode->count + 1; i++)
{
DeleteTree(pNode->child[i]);
delete pNode->child[i];
}
delete[] pNode->key;
delete[] pNode->child;
}
}
template<class T>
void BTree<T>::print(Node<T>* pNode)
{
if (pNode->leaf)
{
cout << "leaf count = "<< pNode->count << ":";
for (int i = 1; i <= pNode->count; i++)
{
cout << pNode->key[i] << ",";
}
cout << endl;
}
else
{
for (int i = 1; i <= pNode->count + 1; i++)
{
//cout << pNode->child[i] << endl;
print(pNode->child[i]);
}
cout << "inner node count:" << pNode->count << ":";
for (int i = 1; i < pNode->count; i++)
{
cout << pNode->key[i] << ",";
}
cout << endl;
}
}
网友评论