美文网首页
简单搞定Shuffle机制运行原理

简单搞定Shuffle机制运行原理

作者: 三万_chenbing | 来源:发表于2018-01-16 11:38 被阅读0次

    概述

    1)mapreduce中,map阶段处理的数据如何传递给reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle;

    2)shuffle: 洗牌、发牌(核心机制:数据分区、排序、缓存);

    3)具体来说:就是将maptask输出的处理结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序。

    2.4.2 Shuffle结构

    Shuffle缓存流程:

    shuffle是MR处理流程中的一个过程,它的每一个处理步骤是分散在各个map task和reduce task节点上完成的。

    2.4.3 partition分区

    如果reduceTask的数量> getPartition的结果数,则会多产生几个空的输出文件part-r-000xx;

    如果1

    如果reduceTask的数量=1,则不管mapTask端输出多少个分区文件,最终结果都交给这一个reduceTask,最终也就只会产生一个结果文件 part-r-00000;

    例如:假设自定义分区数为5,则

    (1)job.setNumReduceTasks(1);会正常运行,只不过会产生一个输出文件

    (2)job.setNumReduceTasks(2);会报错

    (3)job.setNumReduceTasks(6);大于5,程序会正常运行,会产生空文件

    2.4.5 Shuffle运行机制

    2)流程详解

    上面的流程是整个mapreduce最全工作流程,但是shuffle过程只是从第7步开始到第16步结束,具体shuffle过程详解,如下:

    1)maptask收集我们的map()方法输出的kv对,放到内存缓冲区中

    2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

    3)多个溢出文件会被合并成大的溢出文件

    4)在溢出过程中,及合并的过程中,都要调用partitoner进行分组和针对key进行排序

    5)reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据

    6)reducetask会取到同一个分区的来自不同maptask的结果文件,reducetask会将这些文件再进行合并(归并排序)

    7)合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的reduce()方法)

    3)注意

    Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

    缓冲区的大小可以通过参数调整,参数:io.sort.mb 默认100M

    2.4.6 Combiner合并

    1)combiner是MR程序中Mapper和Reducer之外的一种组件

    2)combiner组件的父类就是Reducer

    3)combiner和reducer的区别在于运行的位置:

    Combiner是在每一个maptask所在的节点运行

    Reducer是接收全局所有Mapper的输出结果;

    4)combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量

    6)combiner能够应用的前提是不能影响最终的业务逻辑,而且,combiner的输出kv应该跟reducer的输入kv类型要对应起来

    Mapper

    相关文章

      网友评论

          本文标题:简单搞定Shuffle机制运行原理

          本文链接:https://www.haomeiwen.com/subject/qycsoxtx.html