time ROC代码

作者: 郭师傅 | 来源:发表于2022-04-16 16:31 被阅读0次

    一、绘制符合ggplot2风格的图片,可以加theme

    1、先定义一个函数,生成timeROC对象,注意数据集和相应列名需要修改

    library(survivalROC)
    ## Define a helper functio nto evaluate at various t
    survivalROC_helper <- function(t) {
        survivalROC(Stime        = ovarian$futime,
                    status       = ovarian$fustat,
                    marker       = ovarian$lp,
                    predict.time = t,
                    method       = "NNE",
                    span = 0.25 * nrow(ovarian)^(-0.20))
    }
    

    2、计算每180天的ROC参数,具体时间可以修改,传入数据为向量

    ## Evaluate every 180 days
    survivalROC_data <- data_frame(t = 180 * c(1,2,3,4,5,6)) %>%
        mutate(survivalROC = map(t, survivalROC_helper),
               ## Extract scalar AUC
               auc = map_dbl(survivalROC, magrittr::extract2, "AUC"),
               ## Put cut off dependent values in a data_frame
               df_survivalROC = map(survivalROC, function(obj) {
                   as_data_frame(obj[c("cut.values","TP","FP")])
               })) %>%
        dplyr::select(-survivalROC) %>%
        unnest() %>%
        arrange(t, FP, TP)
    

    3、画图

    ## Plot
    survivalROC_data %>%
        ggplot(mapping = aes(x = FP, y = TP)) +
        geom_point() +
        geom_line() +
        geom_label(data = survivalROC_data %>% dplyr::select(t,auc) %>% unique,
                   mapping = aes(label = sprintf("%.3f", auc)), x = 0.5, y = 0.5) +
        facet_wrap( ~ t) +
        theme_bw() +
        theme(axis.text.x = element_text(angle = 90, vjust = 0.5),
              legend.key = element_blank(),
              plot.title = element_text(hjust = 0.5),
              strip.background = element_blank())
    

    二、用timeROC包画,便于事后各种对比

    library(timeROC)
    time_roc_1 <-  timeROC(
      T = data_ti_roc$STIATime,
      delta = data_ti_roc$STIA,
      marker = data_ti_roc$lp_ti_roc_1, #方向相反加个-
      cause = 1,
      weighting="marginal", #uses the Kaplan-Meier
      times = seq(10,60,10),
      ROC = TRUE,
      iid = T
    )
    
    library(RColorBrewer)  # 使用包之前,先加载
    plot(time_roc_1,time=60,title =FALSE,col = brewer.pal(4,'Dark2')[1])        
    plot(time_roc_2,time=60,add=TRUE,col = brewer.pal(4,'Dark2')[2]) 
    plot(time_roc_3,time=60,add=TRUE,col = brewer.pal(4,'Dark2')[3]) 
    plot(time_roc_4,time=60,add=TRUE,col = brewer.pal(4,'Dark2')[4])
    legend("bottomright",c("CHA2DS2VASC","CHA2DS2VASC+PTFV15000","CHA2DS2VASC+LAE","CHA2DS2VASC+PTFV15000+LAE"),col = brewer.pal(4,'Dark2'),lty=1,lwd=2)
    

    三、绘制timeAUC比较曲线

    带置信区间的并不好看

    ## 绘制timeAUC
    par(oma = c(0,0,0,0),      #外框据整个绘图区域四周距离,单位是"行"
        mar = c(4,4,0.5,0.5),  #图片四周距外框距离,同上,如果用omi或mri,单位是英寸,不算四周文字
        mgp = c(1.7,0.5,0),    #三个数字,分别为坐标标题到坐标轴距离,坐标数字到轴距离,ticks到轴距离
        cex = 0.8            #字体大小,不包括lengend
        #tck = -0.01           #ticks大小及方向,负值向外
    )
    plotAUCcurve(time_roc_1,conf.int=F,col="#00468B99")
    legend(x = 20,y=1,c("CHA2DS2VASC"),col=c("#00468B99"),lty=1,lwd=2,cex = 0.8)
    plotAUCcurve(time_roc_4,conf.int=F,col="#ED000099",add = T)
    legend(x = 20,y=0.95,c("CHA2DS2VASC+PTFV15000+LAE"),col=c("#ED000099"),lty=1,lwd=2,cex = 0.8)
    

    四、绘制timeAUC比较图

    ##------------------------------------------绘制timeAUC比较---------------------------------------
    pdf(file = "time_auc.pdf",width = 4.0,height = 4.0)
    ## 绘制timeAUC
    par(oma = c(0,0,0,0),      #外框据整个绘图区域四周距离,单位是"行"
        mar = c(4,4,0.5,0.5),  #图片四周距外框距离,同上,如果用omi或mri,单位是英寸,不算四周文字
        mgp = c(1.7,0.5,0),    #三个数字,分别为坐标标题到坐标轴距离,坐标数字到轴距离,ticks到轴距离
        cex = 0.8            #字体大小,不包括lengend
        #tck = -0.01           #ticks大小及方向,负值向外
    )
    plotAUCcurve(time_roc_1,conf.int=F,col="#00468B99")
    legend(x = 20,y=1,c("CHA2DS2VASC"),col=c("#00468B99"),lty=1,lwd=2,cex = 0.8)
    plotAUCcurve(time_roc_4,conf.int=F,col="#ED000099",add = T)
    legend(x = 20,y=0.95,c("CHA2DS2VASC+PTFV15000+LAE"),col=c("#ED000099"),lty=1,lwd=2,cex = 0.8)
    dev.off()
    

    五、timeROC面积比较

    ##---------------------------------timeROC各项参比较----------------------------------------
    
    ci_roc_1 = confint(time_roc_1)
    ci_roc_2 = confint(time_roc_2)
    ci_roc_3 = confint(time_roc_3)
    ci_roc_4 = confint(time_roc_4)
    
    ci_roc_1 <- ci_roc_1$CI_AUC %>% t() %>% data.frame() %>% dplyr::select(t.60)
    ci_roc_2 <- ci_roc_2$CI_AUC %>% t() %>% data.frame() %>% dplyr::select(t.60)
    ci_roc_3 <- ci_roc_3$CI_AUC %>% t() %>% data.frame() %>% dplyr::select(t.60)
    ci_roc_4 <- ci_roc_4$CI_AUC %>% t() %>% data.frame() %>% dplyr::select(t.60)
    
    df_ti_rocs <- data.frame(AUC = c(time_roc_1$AUC['t=60'],time_roc_2$AUC['t=60'],time_roc_3$AUC['t=60'],time_roc_4$AUC['t=60']),
                             lower = c(ci_roc_1[1,1],ci_roc_2[1,1],ci_roc_3[1,1],ci_roc_4[1,1]),
                             upper = c(ci_roc_1[2,1],ci_roc_2[2,1],ci_roc_3[2,1],ci_roc_4[2,1])
    )
    
    df_ti_rocs$ORCI <- df_ti_rocs %>% apply(1,function(x){str_c(c(round(x["AUC"],3),"(",round(x["lower"],4),"-",round(x["upper"],4),")"),collapse = "")})
    
    df_ti_rocs <- df_ti_rocs %>% mutate(p = c(NA,
                                              compare(time_roc_2,time_roc_1)$p_values_AUC[[6]],
                                              compare(time_roc_3,time_roc_1)$p_values_AUC[[6]],
                                              compare(time_roc_4,time_roc_1)$p_values_AUC[[6]]
    ))
    
    write.csv(df_ti_rocs,file = "auc_compare.csv")
    

    六、计算cox模型的Harrell's C-Statistics

    ##----------------------------------------------计算cox模型的Harrell's  C-Statistics------------------------------------
    #BiocManager::install("survcomp")
    library(survcomp)
    
    cindex_with_ci <- fit_ti_rocs %>% lapply(function(x){c_index <- concordance.index(predict(x,data),
                                                                                      surv.time = data$STIATime,surv.event = data$STIA %>% as.numeric,method="noether",na.rm = T)
    c_index_1 <- c(str_c(c(c_index$c.index %>% round(3),"(",c_index$lower %>% round(3),"-",c_index$upper %>% round(3),")"),collapse = ""))        
    }) 
    cindex_with_ci
    
    cindex <- fit_ti_rocs %>% lapply(function(x){c_index <- concordance.index(predict(x,data),
                                                                              surv.time = data$STIATime,surv.event = data$STIA %>% as.numeric,method="noether",na.rm = T)
    #cindex_with_ci <- cindex_with_ci %>% data.frame()
    
    #c_index_1 <- c_index$c.index %>% round(3)    
    })
    
    ## C-statistics 比较,比较的是列表,不是单个值
    cind_comp_p <- c()
    i = 1
    while (i < length(cindex)) {
      p <- cindex.comp(cindex[[i+1]],cindex[[1]])
      p <- p[[1]] 
      cind_comp_p <- append(cind_comp_p,p)
      i = i+1
    }
    cind_comp_p
    

    七、计算并比较cox模型IDI和NRI

    ##-----------------------------计算cox模型IDI和NRI--------------------------------------------
    library(survIDINRI)
    #定义时间节点
    #t0=365*5
    t0=60
    ## 所有列转成数字
    data_ti_roc <- apply(data_ti_roc,2,function(x)as.numeric(x)) %>% data.frame()
    
    #data_ti_roc <- data_ti_roc[1:100,]       ## 先用小样本实验,计算时间很长
    
    ## 提取结局列
    outcomes = as.matrix(subset(data_ti_roc,select=c(STIATime,STIA)))
    
    ##提取变量列,转成矩阵
    
    #data_ti_roc$time = as.integer(data_ti_roc$STIATime)
    #data_ti_roc$status = as.numeric(data_ti_roc$STIA)
    head(data_ti_roc)
    model_1 <- as.matrix(subset(data_ti_roc,select=c("CHA2DS2VASC"))) 
    model_2 <- as.matrix(subset(data_ti_roc,select=c("CHA2DS2VASC","PTFV15000"))) 
    model_3 <- as.matrix(subset(data_ti_roc,select=c(CHA2DS2VASC,LAE))) 
    model_4 <- as.matrix(subset(data_ti_roc,select=c(CHA2DS2VASC,LAE,PTFV15000))) 
    head(model_1)
    head(model_2)
    head(model_3)
    head(model_4)
    head(data_ti_roc)
    
    ##开始对比
    
    x2<-IDI.INF(outcomes,model_1, model_2, t0, npert=1000)
    IDI.INF.OUT(x2)
    x3<-IDI.INF(outcomes,model_1, model_3, t0, npert=1000)
    IDI.INF.OUT(x3)
    x4<-IDI.INF(outcomes,model_1, model_4, t0, npert=1000)
    IDI.INF.OUT(x4)
    #只能手抄结果
    #M1表示IDI
    #M2表示NRI
    #M3表示中位数差异
    

    八、绘制COX校正曲线

    ##----------------------------制作cox校正曲线-----------------------------
    library(rms)
    
    dd<-datadist(data_ti_roc) #设置工作环境变量,将数据整合
    options(datadist='dd') #设置工作环境变量,将数据整合
    ##
    ##time.in 和 u 要是一样的,都是要评价的时间节点
    time_inc <- 60
    coxm_1 <- cph(formula_ti_roc_4,data=data_ti_roc,surv=T,x=T,y=T,time.inc = time_inc)
    ###绘制cox回归生存概率的nomogram图
    ## 构建Nomo图的对象只能是rms保重d额cph()函数
    surv <- Survival(coxm_1) # 构建生存概率函数
    nom <- nomogram(coxm_1,fun=list(#function(x)surv(70,1-x),
                                    function(x)surv(60,1-x),
                                    function(x)surv(36,1-x)),  ##算出不同时间节点生存率值
                    ##算出不同时间节点生存率值,显示在列线图上
                    funlabel = c("60","36"),
                    lp=F
                    #fun.at=c('0.9','0.85','0.80','0.70','0.6','0.5','0.4','0.3','0.2','0.1')
    )
    plot(nom)
    
    ##time.in 和 u 要是一样的,都是要评价的时间节点
    time_inc <- 60
    coxm_1 <- cph(formula_ti_roc_4,data=data_ti_roc,surv=T,x=T,y=T,time.inc = time_inc)
    m = (nrow(data_ti_roc)/5) %>% ceiling()   ## m 约等于样本数5分之一
    m
    cal_1<-calibrate(coxm_1,u=time_inc,cmethod='KM',m= m,B=1000)
    
    pdf("fig5a.pdf",width = 3.9,height = 4.5)
    
    plot(cal_1,lwd=2,lty=1, ##设置线条形状和尺寸
         errbar.col=c(rgb(0,118,192,maxColorValue = 255)), ##设置一个颜色
         xlab='Nomogram-Predicted Probability of 1-year DFS',#便签
         ylab='Actual 1-year DFS(proportion)',#标签
         col=c(rgb(192,98,83,maxColorValue = 255)),#设置一个颜色
         xlim = c(0,1),ylim = c(0,1)) ##x轴和y轴范围
    dev.off()
    
    table(data$STIA)
    

    九、制作cox 决策曲线

    ##-----------------------------制作cox 决策曲线-----------------------------------------
    library(ggDCA)
    if (!require(ggDCA)) {
      devtools::install_github("yikeshu0611/ggDCA")
    }
    
    dca_1 <- dca(fit_ti_roc_3)
    dca_4 <- dca(fit_ti_roc_4)
    dca <- dca(fit_ti_roc_1,fit_ti_roc_4,times = 60,model.names = c("model1","model4"))
    dca_1 <- ggplot(dca,       
                    model.names="模型1",
                    linetype =F, #线型
                    lwd = 0.6)+
      #ylim(c(-0.02,0.05))+
      theme(legend.position = c(0.7,0.8),
            text = element_text(size = 8)
            )+
      scale_color_lancet()
    dca_1
    
    ggsave("time_dca.pdf",dca_1,width = 8,height = 8.5,units = "cm")
    

    相关文章

      网友评论

        本文标题:time ROC代码

        本文链接:https://www.haomeiwen.com/subject/qydhertx.html