NN

作者: DeepWeaver | 来源:发表于2017-12-06 09:49 被阅读20次
    # feed forward nn
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision.datasets as dsets
    import torchvision.transforms as transforms
    from torch.autograd import Variable
    import argparse
    
    parser = argparse.ArgumentParser(description='feedforward_mnist')
        # learning & saving parameterss
    parser.add_argument('-train', default = False, help = 'train the model')
    parser.add_argument('-test', default = True, help = 'test the model')
    parser.add_argument('-learning_rate', type = float, default = 0.005, help = 'initial learning rate [default = 0.001')
    parser.add_argument('-num_epochs', type = int, default = 5, help = 'number of epochs of training [default = 10')
    parser.add_argument('-batch_size', type = int, default = 100, help = 'batch size for training')
    parser.add_argument('-input_size', type = int, default = 784, help = 'input size')
    parser.add_argument('-hidden_size', type = int, default = 500, help = 'hidden size')
    parser.add_argument('-output_size',type = int, default = 1, help = 'output size')
    parser.add_argument('-num_classes', type = int, default = 10, help = 'hidden layer number')
    parser.add_argument('-cuda',default = False, help = 'enable gpu')
    args = parser.parse_args()
    # Hyper Parameters 
    input_size = args.input_size
    hidden_size = args.hidden_size
    num_classes = args.num_classes
    num_epochs = args.num_epochs
    batch_size = args.batch_size
    learning_rate = args.learning_rate
    
    
    class Net(nn.Module):
        def __init__(self, input_size, hidden_size, num_classes):
            super(Net, self).__init__()
            self.layer1 = nn.Linear(input_size, hidden_size) 
            # self.relu = nn.ReLU()
            self.layer2 = nn.Linear(hidden_size, num_classes)  
        
        def forward(self, x):
            x = F.leaky_relu(self.layer1(x))
            x = self.layer2(x)
            return x
    net = Net(input_size, hidden_size, num_classes)
    
    
    if args.train == True:
        train_dataset = dsets.MNIST(root='./data', 
                                train=args.train, 
                                transform=transforms.ToTensor(),  
                                download=True) 
        train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                               batch_size=batch_size, 
                                               shuffle=True)
        # Loss and Optimizer
        criterion = nn.CrossEntropyLoss()  
        optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)  
        # Train the Model
        for epoch in range(num_epochs):
            for i, (images, labels) in enumerate(train_loader):  
                # Convert torch tensor to Variable
                images = Variable(images.view(-1, 28*28))# image.size() = ([100, 1, 28, 28])
                labels = Variable(labels)
                
                # Forward + Backward + Optimize
                optimizer.zero_grad()  # zero the gradient buffer
                outputs = net(images)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()
                
                if (i+1) % 100 == 0:
                    print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' 
                           %(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
        torch.save(net.state_dict(), 'model.pkl')
        # save only parameters
    # MNIST Dataset 
    
    if args.test == True:
        test_dataset = dsets.MNIST(root='./data', 
                                   train=args.train, 
                                   transform=transforms.ToTensor())
        test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                              batch_size=batch_size, 
                                              shuffle=False)
        ##############################
        net.load_state_dict(torch.load('model.pkl'))
        # load parameters to net model
        ##############################
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = Variable(images.view(-1, 28*28))
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()
    
        print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
    

    相关文章

      网友评论

          本文标题:NN

          本文链接:https://www.haomeiwen.com/subject/qzhkixtx.html