美文网首页
Pandas学习笔记

Pandas学习笔记

作者: 都灵的夏天_ | 来源:发表于2020-11-22 22:33 被阅读0次

pandas笔记

插入pandas

import pandas as pd
import numpy as np

创建序列

s = pd.Series([1,3,6,np.nan,44,1])   #nan = not a number 
print(s)
0     1.0
1     3.0
2     6.0
3     NaN
4    44.0
5     1.0
dtype: float64

创建dataframe

dates =  pd.date_range('20160101',periods=6)
print(dates)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d'])
print(df)
print('-------------------------------------------------------------------')
df1 = pd.DataFrame(np.random.randn(6,4))
print(df1)
print('-------------------------------------------------------------------')

df2 = pd.DataFrame({'A':1.,
                   'B':pd.Timestamp('20200101'),
                   'C':pd.Series(1,index=list(range(4)),dtype='float32'),
                    'D':np.array([3]*4,dtype='int32'),
                    'E':pd.Categorical(["test","train","test","train"]),
                    'F':'foo'})
print(df2)
print('-------------------------------------------------------------------')
print(df2.dtypes)   #输出类型
print('-------------------------------------------------------------------')
print(df2.index)  #输出行索引
print('-------------------------------------------------------------------')
print(df2.columns)   #输出列索引
print('-------------------------------------------------------------------')
print(df2.values)     #输出值
print('-------------------------------------------------------------------')
print(df2.describe())      #输出常见的统计数据 求和/均值/标准差/最小值...
print('-------------------------------------------------------------------')
print(df2.T)     #转置
print('-------------------------------------------------------------------')
print(df2.sort_index(axis=1,ascending=False)) #索引列倒序 axis=0 行倒序
print('-------------------------------------------------------------------')
print(df2.sort_values(by='E'))  #值排序 

DatetimeIndex(['2016-01-01', '2016-01-02', '2016-01-03', '2016-01-04',
               '2016-01-05', '2016-01-06'],
              dtype='datetime64[ns]', freq='D')
                   a         b         c         d
2016-01-01 -1.671207 -0.932499 -1.655480  0.769094
2016-01-02 -0.680207 -0.666975 -1.760835  0.337892
2016-01-03  0.426209  1.478592  1.028569 -1.529521
2016-01-04 -0.906435  0.813065  0.638096 -0.283077
2016-01-05 -0.790560  0.233199 -0.730250  0.056732
2016-01-06  0.791728  0.958603  1.275976  1.052596
-------------------------------------------------------------------
          0         1         2         3
0  0.280672  1.326906 -1.078034 -1.739482
1 -0.282193 -0.392775 -0.512235 -0.361789
2 -0.402586  0.326123 -0.291029  0.129753
3 -0.607459  0.177432 -0.527313 -0.734037
4 -1.011148  0.069085 -0.324561 -0.687408
5 -0.301261  0.752312  0.567507 -0.432943
-------------------------------------------------------------------
     A          B    C  D      E    F
0  1.0 2020-01-01  1.0  3   test  foo
1  1.0 2020-01-01  1.0  3  train  foo
2  1.0 2020-01-01  1.0  3   test  foo
3  1.0 2020-01-01  1.0  3  train  foo
-------------------------------------------------------------------
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object
-------------------------------------------------------------------
Int64Index([0, 1, 2, 3], dtype='int64')
-------------------------------------------------------------------
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
-------------------------------------------------------------------
[[1.0 Timestamp('2020-01-01 00:00:00') 1.0 3 'test' 'foo']
 [1.0 Timestamp('2020-01-01 00:00:00') 1.0 3 'train' 'foo']
 [1.0 Timestamp('2020-01-01 00:00:00') 1.0 3 'test' 'foo']
 [1.0 Timestamp('2020-01-01 00:00:00') 1.0 3 'train' 'foo']]
-------------------------------------------------------------------
         A    C    D
count  4.0  4.0  4.0
mean   1.0  1.0  3.0
std    0.0  0.0  0.0
min    1.0  1.0  3.0
25%    1.0  1.0  3.0
50%    1.0  1.0  3.0
75%    1.0  1.0  3.0
max    1.0  1.0  3.0
-------------------------------------------------------------------
                     0                    1                    2  \
A                    1                    1                    1   
B  2020-01-01 00:00:00  2020-01-01 00:00:00  2020-01-01 00:00:00   
C                    1                    1                    1   
D                    3                    3                    3   
E                 test                train                 test   
F                  foo                  foo                  foo   

                     3  
A                    1  
B  2020-01-01 00:00:00  
C                    1  
D                    3  
E                train  
F                  foo  
-------------------------------------------------------------------
     F      E  D    C          B    A
0  foo   test  3  1.0 2020-01-01  1.0
1  foo  train  3  1.0 2020-01-01  1.0
2  foo   test  3  1.0 2020-01-01  1.0
3  foo  train  3  1.0 2020-01-01  1.0
-------------------------------------------------------------------
     A          B    C  D      E    F
0  1.0 2020-01-01  1.0  3   test  foo
2  1.0 2020-01-01  1.0  3   test  foo
1  1.0 2020-01-01  1.0  3  train  foo
3  1.0 2020-01-01  1.0  3  train  foo

选择数据

dates = pd.date_range('20200101',periods=6)
df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['A','B','C','D'])
print(df)
print('-------------------------------------------------------------------')
print(df.A)#打印A列
print('-------------------------------------------------------------------')
print(df[0:2])#0-1行
print('-------------------------------------------------------------------')
print(df['20200102':'20200104'])
print('-------------------------------------------------------------------')
# slect by label:loc
print(df.loc['20200103'])  #根据横向标签选择
print('-------------------------------------------------------------------')
print(df.loc[:,['A','B']])       #根据列标签选择
print('-------------------------------------------------------------------')
# select by position:iloc
print(df.iloc[3:,1:2])  #根据索引选择
print('-------------------------------------------------------------------')
print(df.iloc[[1,3,5],1:3])
print('-------------------------------------------------------------------')
# mixed selection:ix  综合loc、iloc
# pandas的1.0.0版本开始,移除了Series.ix and DataFrame.ix 方法
#print(df.ix[:3,['A','C']])
print('-------------------------------------------------------------------')
#Boolean indexing
print(df[df.A<8]) #输出小于8 的行
             A   B   C   D
2020-01-01   0   1   2   3
2020-01-02   4   5   6   7
2020-01-03   8   9  10  11
2020-01-04  12  13  14  15
2020-01-05  16  17  18  19
2020-01-06  20  21  22  23
-------------------------------------------------------------------
2020-01-01     0
2020-01-02     4
2020-01-03     8
2020-01-04    12
2020-01-05    16
2020-01-06    20
Freq: D, Name: A, dtype: int32
-------------------------------------------------------------------
            A  B  C  D
2020-01-01  0  1  2  3
2020-01-02  4  5  6  7
-------------------------------------------------------------------
             A   B   C   D
2020-01-02   4   5   6   7
2020-01-03   8   9  10  11
2020-01-04  12  13  14  15
-------------------------------------------------------------------
A     8
B     9
C    10
D    11
Name: 2020-01-03 00:00:00, dtype: int32
-------------------------------------------------------------------
             A   B
2020-01-01   0   1
2020-01-02   4   5
2020-01-03   8   9
2020-01-04  12  13
2020-01-05  16  17
2020-01-06  20  21
-------------------------------------------------------------------
             B
2020-01-04  13
2020-01-05  17
2020-01-06  21
-------------------------------------------------------------------
             B   C
2020-01-02   5   6
2020-01-04  13  14
2020-01-06  21  22
-------------------------------------------------------------------
-------------------------------------------------------------------
            A  B  C  D
2020-01-01  0  1  2  3
2020-01-02  4  5  6  7

设置值

dates = pd.date_range('20200101',periods=6)
df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['A','B','C','D'])
df.iloc[2,2]=1111  #根据索引位置修改值
print(df)
print('-------------------------------------------------------------------')
df.loc['20200101','A'] = 2222   #根据标签名修改值
print(df)
print('-------------------------------------------------------------------')
#df[df.A>4]=0             #对A列大于4的行全部赋值为0
print(df)
print('-------------------------------------------------------------------')
df.B[df.A>4]=0              #对A列大于4的数 B列全部赋值为0
print(df)
print('-------------------------------------------------------------------')
df['E'] = np.nan              #添加新的列
print(df)
print('-------------------------------------------------------------------')
df['F'] = pd.Series([1,2,3,4,5,6],index=pd.date_range('20200101',periods=6))#索引一定要对齐
print(df)

             A   B     C   D
2020-01-01   0   1     2   3
2020-01-02   4   5     6   7
2020-01-03   8   9  1111  11
2020-01-04  12  13    14  15
2020-01-05  16  17    18  19
2020-01-06  20  21    22  23
-------------------------------------------------------------------
               A   B     C   D
2020-01-01  2222   1     2   3
2020-01-02     4   5     6   7
2020-01-03     8   9  1111  11
2020-01-04    12  13    14  15
2020-01-05    16  17    18  19
2020-01-06    20  21    22  23
-------------------------------------------------------------------
               A   B     C   D
2020-01-01  2222   1     2   3
2020-01-02     4   5     6   7
2020-01-03     8   9  1111  11
2020-01-04    12  13    14  15
2020-01-05    16  17    18  19
2020-01-06    20  21    22  23
-------------------------------------------------------------------
               A  B     C   D
2020-01-01  2222  0     2   3
2020-01-02     4  5     6   7
2020-01-03     8  0  1111  11
2020-01-04    12  0    14  15
2020-01-05    16  0    18  19
2020-01-06    20  0    22  23
-------------------------------------------------------------------
               A  B     C   D   E
2020-01-01  2222  0     2   3 NaN
2020-01-02     4  5     6   7 NaN
2020-01-03     8  0  1111  11 NaN
2020-01-04    12  0    14  15 NaN
2020-01-05    16  0    18  19 NaN
2020-01-06    20  0    22  23 NaN
-------------------------------------------------------------------
               A  B     C   D   E  F
2020-01-01  2222  0     2   3 NaN  1
2020-01-02     4  5     6   7 NaN  2
2020-01-03     8  0  1111  11 NaN  3
2020-01-04    12  0    14  15 NaN  4
2020-01-05    16  0    18  19 NaN  5
2020-01-06    20  0    22  23 NaN  6

处理丢失数据

dates = pd.date_range('20200101',periods=6)
df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['A','B','C','D'])
df.iloc[0,1]=np.nan  #设置丢失数据
df.iloc[1,2]=np.nan
print(df)
#print(df.dropna(axis=0,how='any'))   # axis=0按行丢掉 =1按列丢掉  any有一个nan就丢掉 all 全部nan才丢掉
print('-------------------------------------------------------------------')
#print(df.fillna(value=0)) #将NaN填充为0
print('-------------------------------------------------------------------')
print(df.isnull())  #查找是否有缺失数据 返回一个布尔列表
print('-------------------------------------------------------------------')
print(np.any(df.isnull())==True)  #判断很大的表格是否有缺失,至少有一个等于true 则返回true
             A     B     C   D
2020-01-01   0   NaN   2.0   3
2020-01-02   4   5.0   NaN   7
2020-01-03   8   9.0  10.0  11
2020-01-04  12  13.0  14.0  15
2020-01-05  16  17.0  18.0  19
2020-01-06  20  21.0  22.0  23
-------------------------------------------------------------------
-------------------------------------------------------------------
                A      B      C      D
2020-01-01  False   True  False  False
2020-01-02  False  False   True  False
2020-01-03  False  False  False  False
2020-01-04  False  False  False  False
2020-01-05  False  False  False  False
2020-01-06  False  False  False  False
-------------------------------------------------------------------
True

导入导出数据

pandas可读取的文件

a.png

可保存的文件

b.png
# -*- coding:utf-8 -*-
#coding: unicode_escape
#上面两行以及是encoding='gbk' 是对编码问题报错 处理
data = pd.read_csv('data/watermelon_3.csv',encoding='gbk')
print(data)

#存储文件
data.to_pickle('watermelon_3.pickle')

    编号  色泽  根蒂  敲声  纹理  脐部  触感     密度    含糖率 好瓜
0    1  青绿  蜷缩  浊响  清晰  凹陷  硬滑  0.697  0.460  是
1    2  乌黑  蜷缩  沉闷  清晰  凹陷  硬滑  0.774  0.376  是
2    3  乌黑  蜷缩  浊响  清晰  凹陷  硬滑  0.634  0.264  是
3    4  青绿  蜷缩  沉闷  清晰  凹陷  硬滑  0.608  0.318  是
4    5  浅白  蜷缩  浊响  清晰  凹陷  硬滑  0.556  0.215  是
5    6  青绿  稍蜷  浊响  清晰  稍凹  软粘  0.403  0.237  是
6    7  乌黑  稍蜷  浊响  稍糊  稍凹  软粘  0.481  0.149  是
7    8  乌黑  稍蜷  浊响  清晰  稍凹  硬滑  0.437  0.211  是
8    9  乌黑  稍蜷  沉闷  稍糊  稍凹  硬滑  0.666  0.091  否
9   10  青绿  硬挺  清脆  清晰  平坦  软粘  0.243  0.267  否
10  11  浅白  硬挺  清脆  模糊  平坦  硬滑  0.245  0.057  否
11  12  浅白  蜷缩  浊响  模糊  平坦  软粘  0.343  0.099  否
12  13  青绿  稍蜷  浊响  稍糊  凹陷  硬滑  0.639  0.161  否
13  14  浅白  稍蜷  沉闷  稍糊  凹陷  硬滑  0.657  0.198  否
14  15  乌黑  稍蜷  浊响  清晰  稍凹  软粘  0.360  0.370  否
15  16  浅白  蜷缩  浊响  模糊  平坦  硬滑  0.593  0.042  否
16  17  青绿  蜷缩  沉闷  稍糊  稍凹  硬滑  0.719  0.103  否

合并数据

#concatenating
df = pd.DataFrame(np.ones((3,4))*0,columns=['A','B','C','D'])
df1= pd.DataFrame(np.ones((3,4))*1,columns=['A','B','C','D'])
df2 = pd.DataFrame(np.ones((3,4))*2,columns=['A','B','C','D'])
print(df)
print(df1)
print(df2)
print('-------------------------------------------------------------------')
res = pd.concat([df1,df2,df3],axis=0,ignore_index=True) #axis=0 竖向合并 axis=1横向合并  ignore_index=True将序列索引重新排序
print(res)
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
     A    B    C    D
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
     A    B    C    D
0  2.0  2.0  2.0  2.0
1  2.0  2.0  2.0  2.0
2  2.0  2.0  2.0  2.0
-------------------------------------------------------------------
     A    B    C    D
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
3  2.0  2.0  2.0  2.0
4  2.0  2.0  2.0  2.0
5  2.0  2.0  2.0  2.0
6  2.0  2.0  2.0  2.0
7  2.0  2.0  2.0  2.0
8  2.0  2.0  2.0  2.0

合并数据-join、append

#join,['inner','outer']
df1= pd.DataFrame(np.ones((3,4))*1,index=[1,2,3],columns=['A','B','C','D'])
df2 = pd.DataFrame(np.ones((3,4))*2,index=[2,3,4],columns=['B','C','D','E'])
print(df1)
print(df2)
print('-------------------------------------------------------------------')
res = pd.concat([df1,df2],join='inner',ignore_index=True) #默认outer填充缺失值为NaN \\ inner:只保留有共同标签的值
print(res)
print('-------------------------------------------------------------------')
#根据给定列填充 join_axes=[df1.index] 在新版本中被删除 无法执行 所以直接使用merge
#res1 = pd.concat([df1,df2],axis=1,join_axes=[df1.index])
#append
res = df1.append(df2,ignore_index=True)
print(res)
print('-------------------------------------------------------------------')
df1= pd.DataFrame(np.ones((3,4))*1,index=[1,2,3],columns=['A','B','C','D'])
s1 = pd.Series([1,2,3,4],index = ['A','B','C','D'])
print(df1)
print(s1)
print('-------------------------------------------------------------------')
res = df1.append(s1,ignore_index=True)
print(res)b
     A    B    C    D
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
     B    C    D    E
2  2.0  2.0  2.0  2.0
3  2.0  2.0  2.0  2.0
4  2.0  2.0  2.0  2.0
-------------------------------------------------------------------
     B    C    D
0  1.0  1.0  1.0
1  1.0  1.0  1.0
2  1.0  1.0  1.0
3  2.0  2.0  2.0
4  2.0  2.0  2.0
5  2.0  2.0  2.0
-------------------------------------------------------------------
     A    B    C    D    E
0  1.0  1.0  1.0  1.0  NaN
1  1.0  1.0  1.0  1.0  NaN
2  1.0  1.0  1.0  1.0  NaN
3  NaN  2.0  2.0  2.0  2.0
4  NaN  2.0  2.0  2.0  2.0
5  NaN  2.0  2.0  2.0  2.0
-------------------------------------------------------------------
     A    B    C    D
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
A    1
B    2
C    3
D    4
dtype: int64
-------------------------------------------------------------------
     A    B    C    D
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
3  1.0  2.0  3.0  4.0

merge合并

left = pd.DataFrame({'key':['K0','K1','K2','K3'],
                                    'A':['A0','A1','A2','A3'],
                                     'B':['B0','B1','B2','B3']})
right = pd.DataFrame({'key':['K0','K1','K2','K3'],
                                    'C':['C0','C1','C2','C3'],
                                     'D':['D0','D1','D2','D3']})
print(left)
print(right)
print('-------------------------------------------------------------------')
res = pd.merge(left,right,on='key')
print(res)




  key   A   B
0  K0  A0  B0
1  K1  A1  B1
2  K2  A2  B2
3  K3  A3  B3
  key   C   D
0  K0  C0  D0
1  K1  C1  D1
2  K2  C2  D2
3  K3  C3  D3
-------------------------------------------------------------------
  key   A   B   C   D
0  K0  A0  B0  C0  D0
1  K1  A1  B1  C1  D1
2  K2  A2  B2  C2  D2
3  K3  A3  B3  C3  D3

merge合并-考虑两个key

# consider two keys
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                             'key2': ['K0', 'K1', 'K0', 'K1'],
                             'A': ['A0', 'A1', 'A2', 'A3'],
                             'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                              'key2': ['K0', 'K0', 'K0', 'K0'],
                              'C': ['C0', 'C1', 'C2', 'C3'],
                              'D': ['D0', 'D1', 'D2', 'D3']})
print(left)
print(right)
print('-------------------------------------------------------------------')
res = pd.merge(left, right, on=['key1', 'key2'], how='inner')  # default for how='inner'
# how = ['left', 'right', 'outer', 'inner']  
res = pd.merge(left, right, on=['key1', 'key2'], how='left')  #基于左边数据合并
print(res)
  key1 key2   A   B
0   K0   K0  A0  B0
1   K0   K1  A1  B1
2   K1   K0  A2  B2
3   K2   K1  A3  B3
  key1 key2   C   D
0   K0   K0  C0  D0
1   K1   K0  C1  D1
2   K1   K0  C2  D2
3   K2   K0  C3  D3
-------------------------------------------------------------------
  key1 key2   A   B    C    D
0   K0   K0  A0  B0   C0   D0
1   K0   K1  A1  B1  NaN  NaN
2   K1   K0  A2  B2   C1   D1
3   K1   K0  A2  B2   C2   D2
4   K2   K1  A3  B3  NaN  NaN

merge合并-indicator

# indicator 的作用给你一个直观的显示数据合并情况
df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']})
df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})
print(df1)
print(df2)
print('-------------------------------------------------------------------')
res = pd.merge(df1, df2, on='col1', how='outer', indicator=True)
# give the indicator a custom name
res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
print(res)
   col1 col_left
0     0        a
1     1        b
   col1  col_right
0     1          2
1     2          2
2     2          2
-------------------------------------------------------------------
   col1 col_left  col_right indicator_column
0     0        a        NaN        left_only
1     1        b        2.0             both
2     2      NaN        2.0       right_only
3     2      NaN        2.0       right_only

merge合并-index

# merged by index
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                                  'B': ['B0', 'B1', 'B2']},
                                  index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
                                     'D': ['D0', 'D2', 'D3']},
                                      index=['K0', 'K2', 'K3'])
print(left)
print(right)
# left_index and right_index
res = pd.merge(left, right, left_index=True, right_index=True, how='outer')
# res = pd.merge(left, right, left_index=True, right_index=True, how='inner')
print(res)
     A   B
K0  A0  B0
K1  A1  B1
K2  A2  B2
     C   D
K0  C0  D0
K2  C2  D2
K3  C3  D3
      A    B    C    D
K0   A0   B0   C0   D0
K1   A1   B1  NaN  NaN
K2   A2   B2   C2   D2
K3  NaN  NaN   C3   D3

merge合并-处理重叠数据


# handle overlapping
boys = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'age': [1, 2, 3]})
girls = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'age': [4, 5, 6]})
print(boys)
print(girls)
res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girl'], how='inner')
print(res)

# join function in pandas is similar with merge. If know merge, you will understand join
    k  age
0  K0    1
1  K1    2
2  K2    3
    k  age
0  K0    4
1  K0    5
2  K3    6
    k  age_boy  age_girl
0  K0        1         4
1  K0        1         5

plot画图

import matplotlib.pyplot as plt
data = pd.Series(np.random.randn(1000), index=np.arange(1000))
data = data.cumsum()#累加过程
data.plot()
plt.show()
print('-------------------------------------------------------------------')
data = pd.DataFrame(np.random.randn(1000, 4), index=np.arange(1000), columns=list("ABCD"))
data = data.cumsum()
print(data.head())
data.plot()
plt.show()
print('-------------------------------------------------------------------')
# plot methods:
# 'bar', 'hist', 'box', 'kde', 'area', scatter', hexbin', 'pie'
ax = data.plot.scatter(x='A', y='B', color='DarkBlue', label="Class 1")
data.plot.scatter(x='A', y='C', color='LightGreen', label='Class 2', ax=ax)

plt.show()
output_32_0.png
-------------------------------------------------------------------
          A         B         C         D
0  0.346351 -2.522668  2.509865 -0.845426
1  0.527578 -2.943785  3.523533  2.287084
2  1.156596 -5.018539  3.974923  1.797585
3  3.635815 -5.410221  5.063978  0.616211
4  5.230207 -4.764272  3.630786  2.111103
output_32_2.png
-------------------------------------------------------------------
output_32_4.png

相关文章

  • 大师兄的Python机器学习笔记:Pandas库

    大师兄的Python机器学习笔记:实现评估模型 一、关于Pandas 1. Pandas和Numpy Pandas...

  • pandas索引取数

    注:《利用python进行数据分析》的学习笔记-pandas import pandas as pd import...

  • pandas-基础笔记

    Pandas学习笔记-基础篇 参考资料 https://www.yiibai.com/pandas/ 导入模块 S...

  • 学习笔记----机器学习(三)

    我是iOS开发者之一。我们的App:今日好出行 申明一下,只是学习笔记,只是学习笔记,只是学习笔记。 Pandas...

  • pandas学习笔记

    pandas学习笔记 1.安装 2.学习代码-Series code 1 0 1001 py...

  • pandas学习笔记

    Pandas库的介绍 Pandas是一个开放源码的Python库,它使用强大的数据结构提供高性能的数据操作和分析工...

  • pandas学习笔记

    pandas 读取 csv 文件 查看pandas的列名以及列数 pandas 查看某一列的全部数据或部分数据 查...

  • pandas学习笔记

    筛选数据 读取文件 import pandas as pdpd.read_csv("Lung.txt",heade...

  • pandas 学习笔记

    pd.Series 简介: Series 是一个定长的有序字典 简单创建: Series 中可以包含多种基本数据类...

  • pandas学习笔记

    最近在学python,正好看到一个讲解pandas的系列视频,正好做一下笔记,笔记会参考视频,同时也会参考pand...

网友评论

      本文标题:Pandas学习笔记

      本文链接:https://www.haomeiwen.com/subject/rdvpiktx.html