来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/loud-and-rich
题目描述:
有一组 n 个人作为实验对象,从 0 到 n - 1 编号,其中每个人都有不同数目的钱,以及不同程度的安静值(quietness)。为了方便起见,我们将编号为 x 的人简称为 "person x "。
给你一个数组 richer ,其中 richer[i] = [ai, bi] 表示 person ai 比 person bi 更有钱。另给你一个整数数组 quiet ,其中 quiet[i] 是 person i 的安静值。richer 中所给出的数据 逻辑自恰(也就是说,在 person x 比 person y 更有钱的同时,不会出现 person y 比 person x 更有钱的情况 )。
现在,返回一个整数数组 answer 作为答案,其中 answer[x] = y 的前提是,在所有拥有的钱肯定不少于 person x 的人中,person y 是最安静的人(也就是安静值 quiet[y] 最小的人)。
示例 1:
输入:richer = [[1,0],[2,1],[3,1],[3,7],[4,3],[5,3],[6,3]], quiet = [3,2,5,4,6,1,7,0]
输出:[5,5,2,5,4,5,6,7]
解释:
answer[0] = 5,
person 5 比 person 3 有更多的钱,person 3 比 person 1 有更多的钱,person 1 比 person 0 有更多的钱。
唯一较为安静(有较低的安静值 quiet[x])的人是 person 7,
但是目前还不清楚他是否比 person 0 更有钱。
answer[7] = 7,
在所有拥有的钱肯定不少于 person 7 的人中(这可能包括 person 3,4,5,6 以及 7),
最安静(有较低安静值 quiet[x])的人是 person 7。
其他的答案也可以用类似的推理来解释。
示例 2:
输入:richer = [], quiet = [0]
输出:[0]
代码实现:
class Solution {
public int[] loudAndRich(int[][] richer, int[] quiet) {
int n = quiet.length;
int[][] w = new int[n][n];
int[] in = new int[n];
for (int[] r : richer) {
int a = r[0], b = r[1];
w[a][b] = 1; in[b]++;
}
Deque<Integer> d = new ArrayDeque<>();
int[] ans = new int[n];
for (int i = 0; i < n; i++) {
ans[i] = i;
if (in[i] == 0) d.addLast(i);
}
while (!d.isEmpty()) {
int t = d.pollFirst();
for (int u = 0; u < n; u++) {
if (w[t][u] == 1) {
if (quiet[ans[t]] < quiet[ans[u]]) ans[u] = ans[t];
if (--in[u] == 0) d.addLast(u);
}
}
}
return ans;
}
}
网友评论