美文网首页
R语言_ggline折线图

R语言_ggline折线图

作者: 莫浪愁 | 来源:发表于2022-09-06 16:19 被阅读0次

    title: "view_ggline"
    author: "wishing"
    date: "20220906"
    output: word_document


    knitr::opts_chunk$set(echo = TRUE)
    
    getwd()
    #设置工作路径
    setwd("D:/desk/speed/data_1/behavior/R")
    #导入数据
    library(xlsx)
    data0=read.xlsx("allspeed_0.xlsx",1)
    #print(data0)
    library(xlsx)
    data1=read.xlsx("lapse800_long.xlsx",1)
    #print(data1)
    #剔除被试5,8,9,14,23,32
    data2=data1[data1$id!=5&
                  data1$id!=8&
                  data1$id!=9&
                  data1$id!=14&
                  data1$id!=23&
                  data1$id!=32,]
    
    #导出数据
    write.xlsx(data2, "lapse800long_out.xlsx")
    write.xlsx(data3, "speedlong_out.xlsx")
    #描述性统计
    library(psych)
    myvars= c("norate","corate","meanrt","fastrt")
    describe(data0[myvars])
    
    library(psych)
    myvars= c("lapse")
    describeBy(data1[myvars],list(time=data1$time))
    describeBy(data1[myvars],list(speed=data1$speed))
    
    describeBy(data2[myvars],list(time=data2$time))
    describeBy(data2[myvars],list(speed=data2$speed))
    
    library(bruceR)
    Describe(data3)
    Describe(data2)
    
    #折线图lapse
    library(ggplot2)
    library(ggpubr)
    ggline(data2,x="time",y="lapse",palette="lancet",width = 0.5,
           order = c("RW","SD"),  add=c("mean_se"), error.plot="errorbar",
           lab.vjust =-0.2,lab.nb.digits=4)+
      stat_compare_means(label = "p.signif",
                         label.x=1.5,label.y=0.18,
                         method = "t.test",paired = TRUE)
    
    1.png
    #speed效应
    ggline(data2,x="speed",y="lapse",add=c("mean_se"))
    
    2.png
    #time*speed交互作用
    ggline(data2,x="speed",y="lapse",color="time",add=c("mean_se"))
    
    3.png
    #meanrt
    
    #time效应可视化
    ggline(data3,x="time",y="meanrt",add=c("mean_se"))+
      stat_compare_means(label = "p.signif",
                         label.x=1.5,label.y=0.18,
                         method = "t.test",paired = TRUE)
    #speed效应
    ggline(data3,x="speed",y="meanrt",add=c("mean_se"))
    
    #time*speed交互作用
    ggline(data3,x="speed",y="meanrt",color="time",add=c("mean_se"))
    
    #corate
    
    #corate_t
    ggline(data3,x="time",y="corate",add=c("mean_se"))+
      stat_compare_means(label = "p.signif",
                         label.x=1.5,label.y=0.85,
                         method = "t.test",paired = TRUE)
    
    #corate_s
    compare_means(corate~speed,data=data3,paired = T)
    compare_means(corate~speed,data=data3,method = "anova")
    compare_means(corate~speed,data=data3,method = "kruskal.test")
    
    my_compar=list(c("1","3"),c("1","4"),c("2","3"),c("2","4"),c("3","4"))
    p=ggline(data3,x="speed",y="corate",palette="lancet",width = 0.5,
                add=c("mean_se"))
                
    p+stat_compare_means(comparisons = my_compar,label = "p.signif",label.y = c(0.85,0.9,0.95,1.0,1.05))+
      stat_compare_means(label.x = 1.6,label.y=1.15)
    #time*speed交互作用
    ggline(data3,x="speed",y="corate",color="time",add=c("mean_se"))
    

    相关文章

      网友评论

          本文标题:R语言_ggline折线图

          本文链接:https://www.haomeiwen.com/subject/rfninrtx.html