美文网首页
6、内存管理(1)

6、内存管理(1)

作者: 小manong | 来源:发表于2019-04-07 12:54 被阅读0次

一、内存管理基本概念

  • 操作系统对内存的划分和动态分配,就是内存管理的概念。有效的内存管理在多道程序设计中非常重要,不仅方便用户使用存储器、提高内存利用率,还可以通过虚拟技术从逻辑上扩充存储器。
  • 内存管理的功能有:

(1)内存空间的分配与回收:由操作系统完成主存储器空间的分配和管理,使程序员摆脱存储分配的麻烦,提高编程效率。
(2)地址转换:在多道程序环境下,程序中的逻辑地址与内存中的物理地址不可能一致,因此存储管理必须提供地址变换功能,把逻辑地址转换成相应的物理地址。
(3)内存空间的扩充:利用虚拟存储技术或自动覆盖技术,从逻辑上扩充内存。
(4)存储保护:保证各道作业在各自的存储空间内运行,.互不干扰。

1、程序装入和链接
  • 创建进程首先要将程序和数据装入内存。将用户源程序变为可在内存中执行的程序,通常需要以下几个步骤:

编译:由编译程序将用户源代码编译成若干个目标模块。
链接:由链接程序将编译后形成的一组目标模块,以及所需库函数链接在一起,形成一个完整的装入模块。
装入:由装入程序将装入模块装入内存运行。

程序装入和链接流程

(1)链接:

静态链接:在程序运行之前,先将各目标模块及它们所需的库函数链接成一个完整的可执行程序,以后不再拆开。
装入时动态链接:将用户源程序编译后所得到的一组目标模块,在装入内存时,釆用边装入边链接的链接方式。
运行时动态链接:对某些目标模块的链接,是在程序执行中需要该目标模块时,才对它进行的链接。其优点是便于修改和更新,便于实现对目标模块的共享。

(2)装入

** 绝对装入**。在编译时,如果知道程序将驻留在内存的某个位置,编译程序将产生绝对地址的目标代码。绝对装入程序按照装入模块中的地址,将程序和数据装入内存。由于程序中的逻辑地址与实际内存地址完全相同,故不需对程序和数据的地址进行修改。
可重定位装入。在多道程序环境下,多个目标模块的起始地址通常都是从0开始,程序中的其他地址都是相对于起始地址的,此时应釆用可重定位装入方式。根据内存的当前情况,将装入模块装入到内存的适当位置。装入时对目标程序中指令和数据的修改过程称为重定位,地址变换通常是在装入时一次完成的,所以又称为静态重定位
动态运行时装入,也称为动态重定位,程序在内存中如果发生移动,就需要釆用动态的装入方式。装入程序在把装入模块装入内存后,并不立即把装入模块中的相对地址转换为绝对地址,而是把这种地址转换推迟到程序真正要执行时才进行。因此,装入内存后的所有地址均为相对地址。

2、逻辑地址空间与物理地址空间

逻辑地址:编译后,每个目标模块都是从0号单元开始编址,称为该目标模块的相对地址(或逻辑地址)。当链接程序将各个模块链接成一个完整的可执行目标程序时,链接程序顺序依次按各个模块的相对地址构成统一的从0号单元开始编址的逻辑地址空间。用户程序和程序员只需知道逻辑地址,而内存管理的具体机制则是完全透明的,它们只有系统编程人员才会涉及。不同进程可以有相同的逻辑地址,因为这些相同的逻辑地址可以映射到主存的不同位置。
物理地址:物理地址空间是指内存中物理单元的集合,它是地址转换的最终地址,进程在运行时执行指令和访问数据最后都要通过物理地址从主存中存取。当装入程序将可执行代码装入内存时,必须通过地址转换将逻辑地址转换成物理地址,这个过程称为地址重定位。

3、内存保护
  • 内存分配前,需要保护操作系统不受用户进程的影响,同时保护用户进程不受其他用户进程的影响。通过釆用重定位寄存器和界地址寄存器来实现这种保护。重定位寄存器含最小的物理地址值,界地址寄存器含逻辑地址值。每个逻辑地址值必须小于界地址寄存器;内存管理机构动态地将逻辑地址与界地址寄存器进行比较,如果未发生地址越界,则加上重定位寄存器的值后映射成物理地址,再送交内存单元


    重定位和界地址寄存器的硬件支持

二、内存覆盖与内存交换

  • 覆盖与交换技术是在多道程序环境下用来扩充内存的两种方法。
  • 交换技术主要是在不同进程(或作业)之间进行,而覆盖则用于同一个程序或进程中。由于覆盖技术要求给出程序段之间的覆盖结构,使得其对用户和程序员不透明,所以对于主存无法存放用户程序的矛盾,现代操作系统是通过虚拟内存技术来解决的,覆盖技术则已成为历史;而交换技术在现代操作系统中仍具有较强的生命力。
1、内存覆盖
  • 覆盖的基本思想是:由于程序运行时并非任何时候都要访问程序及数据的各个部分(尤其是大程序),因此可以把用户空间分成一个固定区和若干个覆盖区。将经常活跃的部分放在固定区,其余部分按调用关系分段。首先将那些即将要访问的段放入覆盖区,其他段放在外存中,在需要调用前,系统再将其调入覆盖区,替换覆盖区中原有的段
2、内存交换
  • 交换(对换)的基本思想是,把处于等待状态(或在CPU调度原则下被剥夺运行权利) 的程序从内存移到辅存,把内存空间腾出来,这一过程又叫换出;把准备好竞争CPU运行的程序从辅存移到内存,这一过程又称为换入。(例如,有一个CPU釆用时间片轮转调度算法的多道程序环境。时间片到,内存管理器将刚刚执行过的进程换出,将另一进程换入到刚刚释放的内存空间中。同时,CPU调度器可以将时间片分配给其他已在内存中的进程。每个进程用完时间片都与另一进程交换。理想情况下,内存管理器的交换过程速度足够快,总有进程在内存中可以执行。

三、内存连续分配管理方式

  • 连续分配方式,是指为一个用户程序分配一个连续的内存空间。它主要包括单一连续分配、固定分区分配和动态分区分配。


    三种内存分配方法比较

四、内存非连续分配管理方式

  • 非连续分配允许一个程序分散地装入到不相邻的内存分区中,根据分区的大小是否固定分为分页存储管理方式和分段存储管理方式。分页存储管理方式中,又根据运行作业时是否要把作业的所有页面都装入内存才能运行分为基本分页存储管理方式和请求分页存储管理方式。
  • 固定分区会产生内部碎片,动态分区会产生外部碎片,这两种技术对内存的利用率都比较低。我们希望内存的使用能尽量避免碎片的产生,这就引入了分页的思想:把主存空间划分为大小相等且固定的块,块相对较小,作为主存的基本单位。每个进程也以块为单位进行划分,进程在执行时,以块为单位逐个申请主存中的块空间。分页的方法从形式上看,像分区相等的固定分区技术,分页管理不会产生外部碎片。但它又有本质的不同点:块的大小相对分区要小很多,而且进程也按照块进行划分,进程运行时按块申请主存可用空间并执行。这样,进程只会在为最后一个不完整的块申请一个主存块空间时,才产生主存碎片,所以尽管会产生内部碎片,但是这种碎片相对于进程来说也是很小的,每个进程平均只产生半个块大小的内部碎片(也称页内碎片)。
1、基本分页存储管理方式

(1)分页存储的几个基本概念
①页面和页面大小。进程中的块称为页(Page),内存中的块称为页框(Page Frame,或页帧)。外存也以同样的单位进行划分,直接称为块(Block)。进程在执行时需要申请主存空间,就是要为每个页面分配主存中的可用页框,这就产生了页和页框的一一对应。(为方便地址转换,页面大小应是2的整数幂。同时页面大小应该适中,如果页面太小,会使进程的页面数过多,这样页表就过长,占用大量内存,而且也会增加硬件地址转换的开销,降低页面换入/换出的效率;页面过大又会使页内碎片增大,降低内存的利用率。)
②地址结构。地址结构包含两部分:前一部分为页号P,后一部分为页内偏移量W。地址长度为32 位,其中011位为页内地址,即每页大小为4KB;1231位为页号,地址空间最多允许有220页。
③页表。为了便于在内存中找到进程的每个页面所对应的物理块,系统为每个进程建立一张页表,记录页面在内存中对应的物理块号,页表一般存放在内存中。

页表作用
(2)、基本地址变换机构
  • 地址变换机构的任务是将逻辑地址转换为内存中物理地址,地址变换是借助于页表实现的。
  • 在系统中通常设置一个页表寄存器(PTR),存放页表在内存的始址F和页表长度M。进程未执行时,页表的始址和长度存放在进程控制块中,当进程执行时,才将页表始址和长度存入页表寄存器。整个地址变换过程均是由硬件自动完成的。
  • 需要解决的两个问题:
  • 每次访存操作都需要进行逻辑地址到物理地址的转换,地址转换过程必须足够快,否则访存速度会降低;
  • 每个进程引入了页表,用于存储映射机制,页表不能太大,否则内存利用率会降低。
(3)、具有快表的地址变换机构
  • 若页表全部放在内存中,则存取一个数据或一条指令至少要访问两次内存:一次是访问页表,确定所存取的数据或指令的物理地址,第二次才根据该地址存取数据或指令。显然,这种方法比通常执行指令的速度慢了一半。为此,在地址变换机构中增设了一个具有并行查找能力的高速缓冲存储器——快表,又称联想寄存器(TLB),用来存放当前访问的若干页表项,以加速地址变换的过程。
  • 一般快表的命中率可以达到90%以上,这样,分页带来的速度损失就降低到10%以下。
(4)、两级页表
2、基本分段存储管理方式
  • 分页管理方式是从计算机的角度考虑设计的,以提高内存的利用率,提升计算机的性能, 且分页通过硬件机制实现,对用户完全透明;而分段管理方式的提出则是考虑了用户和程序员,以满足方便编程、信息保护和共享、动态增长及动态链接等多方面的需要。
(1)分段
  • 段式管理方式按照用户进程中的自然段划分逻辑空间。例如,用户进程由主程序、两个子程序、栈和一段数据组成,于是可以把这个用户进程划分为5个段,每段从0 开始编址,并分配一段连续的地址空间(段内要求连续,段间不要求连续,因此整个作业的地址空间是二维的)。其逻辑地址由段号S与段内偏移量W两部分组成。
  • 一个作业最多可有216=65536个段,最大段长为64KB。
  • 在页式系统中,逻辑地址的页号和页内偏移量对用户是透明的,但在段式系统中,段号和段内偏移量必须由用户显示提供,在髙级程序设计语言中,这个工作由编译程序完成。
(2)段表
  • 每个进程都有一张逻辑空间与内存空间映射的段表,其中每一个段表项对应进程的一个段,段表项记录该段在内存中的起始地址和段的长度。在配置了段表后,执行中的进程可通过查找段表,找到每个段所对应的内存区。可见,段表用于实现从逻辑段到物理内存区的映射。
(3)地址变换机构
  • 为了实现进程从逻辑地址到物理地址的变换功能,在系统中设置了段表寄存器,用于存放段表始址F和段表长度M。
(4) 段的共享与保护
  • 在分段系统中,段的共享是通过两个作业的段表中相应表项指向被共享的段的同一个物理副本来实现的。不能修改的代码称为纯代码或可重入代码(它不属于临界资源),这样的代码和不能修改的数据是可以共享的,而可修改的代码和数据则不能共享。
  • 与分页管理类似,分段管理的保护方法主要有两种:一种是存取控制保护,另一种是地址越界保护。
3、段页式存储管理方式
  • 页式存储管理能有效地提高内存利用率,而分段存储管理能反映程序的逻辑结构并有利于段的共享。如果将这两种存储管理方法结合起来,就形成了段页式存储管理方式。
  • 在段页式系统中,作业的地址空间首先被分成若干个逻辑段,每段都有自己的段号,然后再将每一段分成若干个大小固定的页。对内存空间的管理仍然和分页存储管理一样,将其分成若干个和页面大小相同的存储块,对内存的分配以存储块为单位。

在一个进程中,段表只有一个,而页表可能有多个。

段页式管理方式

相关文章

  • 6、内存管理(1)

    一、内存管理基本概念 操作系统对内存的划分和动态分配,就是内存管理的概念。有效的内存管理在多道程序设计中非常重要,...

  • 面试题难点底层逻辑

    目录 1.多线程管理2.RunLoop3.Runtime4.内存管理5.性能(内存)优化举例6.App 编译与启动...

  • 面试题难点底层逻辑

    目录 1.多线程管理2.RunLoop3.Runtime(运行时)4.内存管理5.性能(内存)优化举例6.App ...

  • 第10章 内存管理和文件操作

    1 内存管理 1.1 内存管理基础 标准内存管理函数堆管理函数虚拟内存管理函数内存映射文件函数 GlobalMem...

  • Swift中的内存管理

    1、内存管理,weak和unowned2、@autoreleasepool3、C 指针内存管理 1、内存管理,we...

  • Lesson 0-1 Objective-C basic

    6.OC 手动内存管理 OC 内存管理原则: 只要使用 alloc, new, copy, mutableCopy...

  • iOS内存管理-基本概念整理

    主要内容:1.内存区域划分2.内存管理/引用计数3.MRC手动管理引用计数4.ARC自动引用计数5.内存泄漏问题6...

  • 6,内存管理

    iOS内存管理基本原理iOS和其它系统一样,内存分页,每页4K。多个页构成一个region统一管理,负责管理的对象...

  • 内存管理

    目录一、内存分区 1、RAM和ROM 2、内存的五大分区二、内存管理 1、OC内存管理是指什么?OC内存管理的本质...

  • 深入理解java虚拟机

    1.内存管理 [图片上传失败...(image-6f65d1-1592384060359)] 1.1程序计数器 ​...

网友评论

      本文标题:6、内存管理(1)

      本文链接:https://www.haomeiwen.com/subject/risdiqtx.html