·# 内存
对用户体验影响
- 可能oom
- 内存过大被LMK机制杀死。
- 内存抖动造成程序卡顿
原理
内存分配策略
首先我们来了解程序运行时,所需内存的分配策略:
按照编译原理的观点,程序运行时的内存分配有三种策略,分别是静态的,栈式的,和堆式的,对应的,三种存储策略使用的内存空间主要分别是静态存储区(也称方法区)、堆区和栈区。他们的功能不同,对他们使用方式也就不同。
静态存储区(方法区):内存在程序编译的时候就已经分配好,这块内存在程序整个运行期间都存在。它主要存放静态数据、全局static数据和常量。
栈区:在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
堆区:亦称动态内存分配。程序在运行的时候用malloc或new申请任意大小的内存,程序员自己负责在适当的时候用free或delete释放内存(Java则依赖垃圾回收器)。动态内存的生存期可以由我们决定,如果我们不释放内存,程序将在最后才释放掉动态内存。 但是,良好的编程习惯是:如果某动态内存不再使用,需要将其释放掉。
在函数中(说明是局部变量)定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配。当在一段代码块中定义一个变量时,java就在栈中为这个变量分配内存空间,当超过变量的作用域后,java会自动释放掉为该变量分配的内存空间,该内存空间可以立刻被另作他用。
堆内存用于存放所有由new创建的对象(内容包括该对象其中的所有成员变量)和数组。在堆中分配的内存,由java虚拟机自动垃圾回收器来管理。在堆中产生了一个数组或者对象后,还可以在栈中定义一个特殊的变量,这个变量的取值等于数组或者对象在堆内存中的首地址,在栈中的这个特殊的变量就变成了数组或者对象的引用变量,以后就可以在程序中使用栈内存中的引用变量来访问堆中的数组或者对象,引用变量相当于为数组或者对象起的一个别名,或者代号。
堆是不连续的内存区域(因为系统是用链表来存储空闲内存地址,自然不是连续的),堆大小受限于计算机系统中有效的虚拟内存(32bit系统理论上是4G),所以堆的空间比较灵活,比较大。栈是一块连续的内存区域,大小是操作系统预定好的,windows下栈大小是2M(也有是1M,在编译时确定,VC中可设置)。
为什么内存泄漏
为了判断Java中是否有内存泄露,我们首先必须了解Java是如何管理(堆)内存的。Java的内存管理就是对象的分配和释放问题。在Java中,内存的分配是由程序完成的,而内存的释放是由垃圾收集器(Garbage Collection,GC)完成的,程序员不需要通过调用函数来释放内存,但它只能回收无用并且不再被其它对象引用的那些对象所占用的空间。
Java的内存垃圾回收机制是从程序的主要运行对象(如静态对象/寄存器/栈上指向的堆内存对象等)开始检查引用链,当遍历一遍后得到上述这些无法回收的对象和他们所引用的对象链,组成无法回收的对象集合,而其他孤立对象(集)就作为垃圾回收。GC为了能够正确释放对象,必须监控每一个对象的运行状态,包括对象的申请、引用、被引用、赋值等,GC都需要进行监控。监视对象状态是为了更加准确地、及时地释放对象,而释放对象的根本原则就是该对象不再被引用。
在Java中,这些无用的对象都由GC负责回收,因此程序员不需要考虑这部分的内存泄露。虽然,我们有几个函数可以访问GC,例如运行GC的函数System.gc(),但是根据Java语言规范定义,该函数不保证JVM的垃圾收集器一定会执行。因为不同的JVM实现者可能使用不同的算法管理GC。通常GC的线程的优先级别较低。JVM调用GC的策略也有很多种,有的是内存使用到达一定程度时,GC才开始工作,也有定时执行的,有的是平缓执行GC,有的是中断式执行GC。但通常来说,我们不需要关心这些。
堆内存中的长生命周期的对象持有短生命周期对象的强/软引用,尽管短生命周期对象已经不再需要,但是因为长生命周期对象持有它的引用而导致不能被回收,这就是Java中内存泄露的根本原因`。
内存泄漏常见原因
集合类
集合类如果仅仅有添加元素的方法,而没有相应的删除机制,导致内存被占用。如果这个集合类是全局性的变量 (比如类中的静态属性,全局性的 map 等即有静态引用或 final 一直指向它),那么没有相应的删除机制,很可能导致集合所占用的内存只增不减。
Android 组件或特殊集合对象的使用
BroadcastReceiver,ContentObserver,FileObserver,Cursor,Callback等在 Activity onDestroy 或者某类生命周期结束之后一定要 unregister 或者 close 掉,否则这个 Activity 类会被 system 强引用,不会被内存回收。
不要直接对 Activity 进行直接引用作为成员变量,如果不得不这么做,请用 private WeakReference mActivity 来做,相同的,对于Service 等其他有自己声明周期的对象来说,直接引用都需要谨慎考虑是否会存在内存泄露的可能。
Handler
要知道,只要 Handler 发送的 Message 尚未被处理,则该 Message 及发送它的 Handler 对象将被线程 MessageQueue 一直持有。由于 Handler 属于 TLS(Thread Local Storage) 变量, 生命周期和 Activity 是不一致的。因此这种实现方式一般很难保证跟 View 或者 Activity 的生命周期保持一致,故很容易导致无法正确释放。如上所述,Handler 的使用要尤为小心,否则将很容易导致内存泄露的发生。
Thread 内存泄露
线程也是造成内存泄露的一个重要的源头。线程产生内存泄露的主要原因在于线程生命周期的不可控。比如线程是 Activity 的内部类,则线程对象中保存了 Activity 的一个引用,当线程的 run 函数耗时较长没有结束时,线程对象是不会被销毁的,因此它所引用的老的 Activity 也不会被销毁,因此就出现了内存泄露的问题。
异步线程未完成前退出 Activity 等组件,可能会导致界面资源无法释放。
这种情况是典型的线程对象导致的内存泄露。原因也很简单,线程 Thread 对象的 run 任务未执行完之前,对象本身是不会释放的。因此 Activity 等组件对象内的线程对象成员如果有耗时任务(一般也都是耗时任务),就会导致一直持有组件本身的引用内存泄露!
本文部分内容和经验摘自网络,结合本次内存泄露的排查总结予以归纳
工具
AS的Memory窗口
可以图表的方式显示内存情况 - 空闲内存 & 已使用内存.
adb shell dumpsys meminfo com.mogujie
非常好的工具 可以显示java heap 、 native heap、共享内存、堆栈信息。
MAT
Eclipse Memory Analysis Tools(点我下载)是一个专门分析Java堆数据内存引用的工具,我们可以使用它方便的定位内存泄露原因,核心任务就是找到GC ROOT位置即可,哎呀,关于这个工具的使用我是真的不想说了,自己搜索吧,实在简单、传统的不行了。
PS:这是开发中使用频率非常高的一个工具之一,麻烦务必掌握其核心使用技巧
DDMS-Heap
DDMS 自带的内存分析工具 比较简单 使用频度不高
leakcanary
leakcanary是一个开源项目,一个内存泄露自动检测工具,是著名的GitHub开源组织Square贡献的,它的主要优势就在于自动化过早的发觉内存泄露、配置简单、抓取贴心,缺点在于还存在一些bug,不过正常使用百分之九十情况是OK的,其核心原理与MAT工具类似。
监控
目前没有对内存进行有效的监控。
线上oom 统计
对线上所有发生的oom进行统计,同时记录所有的activity的调用周期 和 可能的内存泄漏场景
线上内存统计
统计每个ativity的内存使用情况
其他
优化点
兜底回收内存
Activity泄漏会导致该Activity引用到的Bitmap、DrawingCache等无法释放,对内存造成大的压力,兜底回收是指对于已泄漏Activity,尝试回收其持有的资源,泄漏的仅仅是一个Activity空壳,从而降低对内存的压力。
做法也非常简单,在Activity onDestory时候从view的rootview开始,递归释放所有子view涉及的图片,背景,DrawingCache,监听器等等资源,让Activity成为一个不占资源的空壳,泄露了也不会导致图片资源被持有。
fresco
使用fresco,图片信息保存到共享内存上。减少java heap使用
图片按需加载
即图片的大小不应该超过view的大小。在把图片载入内存之前,我们需要先计算出一个合适的inSampleSize缩放比例,避免不必要的大图载入。对此,我们可以重载drawable与ImageView,例如在Activity ondestroy时,检测图片大小与View的大小,若超过可以上报或提示。
oom处理
我们可以在加载bitmap时,若发生OOM(try catch方式),可以通过清除cache,降低bitmap format(ARGB8888/RBG565/ARGB4444/ALPHA8)等方式,重新尝试。
低内存处理
对于系统函数onLowMemory等函数是针对整个系统而已的,对于本进程来说,其dalvik内存距离OOM的差值并没有体现,也没有回调函数供我们及时释放内存。假若能有那么一套机制,可以实时监控进程的堆内存使用率,达到设定值即关于通知相关模块进行内存释放,这会大大的降低OOM。
• 实现原理
这个其实比较简单,通过Runtime获得maxMemory,而totalMemory-freeMemory即为当前真正使用的dalvik内存。
Runtime.getRuntime().maxMemory();
Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
• 操作方式
我们可以定期(前台每隔3分钟)去得到这个值,当我们这个值达到危险值时(例如80%),我们应当主要去释放我们的各种cache资源(bitmap的cache为大头),同时显示的去Trim应用的memory,加速内存收集。
WindowManagerGlobal.getInstance().startTrimMemory(TRIM_MEMORY_COMPLETE);
多进程
对于webview,图库等,由于存在内存系统泄露或者占用内存过多的问题,我们可以采用单独的进程。微信当前也会把它们放在单独的tools进程中
代码实践
对 Activity 等组件的引用应该控制在 Activity 的生命周期之内; 如果不能就考虑使用 getApplicationContext 或者 getApplication,以避免 Activity 被外部长生命周期的对象引用而泄露
警惕线程未终止造成的内存泄露;譬如在Activity中关联了一个生命周期超过Activity的Thread,在退出Activity时切记结束线程。一个典型的例子就是HandlerThread的run方法是一个死循环,它不会自己结束,线程的生命周期超过了Activity生命周期,我们必须手动在Activity的销毁方法中中调运thread.getLooper().quit();才不会泄露。
对象的注册与反注册没有成对出现造成的内存泄露;譬如注册广播接收器、注册观察者(典型的譬如数据库的监听)等。
创建与关闭没有成对出现造成的泄露;譬如Cursor资源必须手动关闭,WebView必须手动销毁,流等对象必须手动关闭等。
在代码复审的时候关注长生命周期对象:全局性的集合、单例模式的使用、类的 static 变量等等。
线程 Runnable 执行耗时操作,注意在页面返回时及时取消或者把 Runnable 写成静态类。
a) 如果线程类是内部类,改为静态内部类。
b) 线程内如果需要引用外部类对象如 context,需要使用弱引用
Handler 的持有的引用对象最好使用弱引用,资源释放时也可以清空 Handler 里面的消息。比如在 Activity onStop 或者 onDestroy 的时候,取消掉该 Handler 对象的 Message和 Runnable.
总结
我们并不能将内存优化中用到的所有技巧都一一说明,而且随着Android版本的更替,可能很多方法都会变的过时。我在想更重要的是我们能持续的发现问题,精细化的监控,而不是一直处于"哪个有坑填哪里的"的窘况。在这里给大家的建议有:
1 率先考虑采用已有的工具;中国人喜欢重复造轮子,我们更推荐花精力去优化已有工具,为广大码农做贡献。生活已不易,码农何为为难码农!
2 不拘泥于点,更重要在于如何建立合理的框架避免发生问题,或者是能及时的发现问题。
网友评论