美文网首页
了解了Android I/O调优让你的应用突飞猛进(下篇)

了解了Android I/O调优让你的应用突飞猛进(下篇)

作者: 一眼万年的星空 | 来源:发表于2022-04-06 14:50 被阅读0次

    通过前面的学习,相信你对I/O相关的基础知识有了一些认识,也了解了测量I/O性能的方法。

    但是在实际应用中,你知道有哪些I/O操作是不合理的吗?我们应该如何发现代码中不合理的I/O操作呢?或者更进一步,我们能否在线上持续监控应用程序中I/O的使用呢?今天我们就一起来看看这些问题如何解决。

    I/O跟踪

    在监控I/O操作之前,你需要先知道应用程序中究竟有哪些I/O操作。

    我在专栏前面讲卡顿优化的中提到过,Facebook的Profilo为了拿到ftrace的信息,使用了PLT Hook技术监听了“atrace_marker_fd”文件的写入。那么还有哪些方法可以实现I/O跟踪,而我们又应该跟踪哪些信息呢?

    1. Java Hook

    出于兼容性的考虑,你可能第一时间想到的方法就是插桩。但是插桩无法监控到所有的I/O操作,因为有大量的系统代码也同样存在I/O操作。

    出于稳定性的考虑,我们退而求其次还可以尝试使用Java Hook方案。以Android 6.0的源码为例,FileInputStream的整个调用流程如下。

    java : FileInputStream -> IoBridge.open -> Libcore.os.open 
    -> BlockGuardOs.open -> Posix.open
    

    Libcore.java中可以找到一个挺不错的Hook点,那就是BlockGuardOs这一个静态变量。如何可以快速找到合适的Hook点呢?一方面需要靠经验,但是耐心查看和分析源码是必不可少的工作。

    public static Os os = new BlockGuardOs(new Posix());
    // 反射获得静态变量
    Class<?> clibcore = Class.forName("libcore.io.Libcore");
    Field fos = clibcore.getDeclaredField("os");
    

    我们可以通过动态代理的方式,在所有I/O相关方法前后加入插桩代码,统计I/O操作相关的信息。事实上,BlockGuardOs里面还有一些Socket相关的方法,我们也可以用来统计网络相关的请求。

    // 动态代理对象
    Proxy.newProxyInstance(cPosix.getClassLoader(), getAllInterfaces(cPosix), this);
    beforeInvoke(method, args, throwable);
    result = method.invoke(mPosixOs, args);
    afterInvoke(method, args, result);
    

    看起来这个方案好像挺不错的,但在实际使用中很快就发现这个方法有几个缺点。

    • 性能极差。I/O操作调用非常频繁,因为使用动态代理和Java的大量字符串操作,导致性能比较差,无法达到线上使用的标准。
    • 无法监控Native代码。例如微信中有大量的I/O操作是在Native代码中,使用Java Hook方案无法监控到。
    • 兼容性差。Java Hook需要每个Android版本去兼容,特别是Android P增加对非公开API限制。

    2. Native Hook

    如果Java Hook不能满足需求,我们自然就会考虑Native Hook方案。Profilo使用到是PLT Hook方案,它的性能比GOT Hook要稍好一些,不过GOT Hook的兼容性会更好一些。

    关于几种Native Hook的实现方式与差异,我在后面会花篇幅专门介绍,今天就不展开了。最终是从libc.so中的这几个函数中选定Hook的目标函数。

    int open(const char *pathname, int flags, mode_t mode);
    ssize_t read(int fd, void *buf, size_t size);
    ssize_t write(int fd, const void *buf, size_t size); write_cuk
    int close(int fd);
    

    因为使用的是GOT Hook,我们需要选择一些有调用上面几个方法的library。微信Matrix中选择的是libjavacore.solibopenjdkjvm.solibopenjdkjvm.so,可以覆盖到所有的Java层的I/O调用,具体可以参考io_canary_jni.cc

    不过我更推荐Profilo中atrace.cpp的做法,它直接遍历所有已经加载的library,一并替换。

    void hookLoadedLibs() {
      auto& functionHooks = getFunctionHooks();
      auto& seenLibs = getSeenLibs();
      facebook::profilo::hooks::hookLoadedLibs(functionHooks, seenLibs);
    }
    

    不同版本的Android系统实现有所不同,在Android 7.0之后,我们还需要替换下面这三个方法。

    open64
    __read_chk
    __write_chk
    

    3. 监控内容

    在实现I/O跟踪后,我们需要进一步思考需要监控哪些I/O信息。假设读取一个文件,我们希望知道这个文件的名字、原始大小、打开文件的堆栈、使用了什么线程这些基本信息。

    接着我们还希望得到这一次操作一共使用了多长时间,使用的Buffer是多大的。是一次连续读完的,还是随机的读取。通过上面Hook的四个接口,我们可以很容易的采集到这些信息。

    1

    下面是一次I/O操作的基本信息,在主线程对一个大小为600KB的“test.db”文件。

    1

    使用了4KB的Buffer,连续读取150次,一次性把整个文件读完,整体的耗时是10ms。因为连读读写时间和打开文件的总时间相同,我们可以判断出这次read()操作是一气呵成的,中间没有间断。

    1

    因为I/O操作真的非常频繁,采集如此多的信息,对应用程序的性能会造成多大的影响呢?我们可以看看是否使用Native Hook的耗时数据。

    1

    你可以看到采用Native Hook的监控方法性能损耗基本可以忽略,这套方案可以用于线上。

    线上监控

    通过Native Hook方式可以采集到所有的I/O相关的信息,但是采集到的信息非常多,我们不可能把所有信息都上报到后台进行分析。

    对于I/O的线上监控,我们需要进一步抽象出规则,明确哪些情况可以定义为不良情况,需要上报到后台,进而推动开发去解决。

    1

    1. 主线程I/O

    我不止一次说过,有时候I/O的写入会突然放大,即使是几百KB的数据,还是尽量不要在主线程上操作。在线上也会经常发现一些I/O操作明明数据量不大,但是最后还是ANR了。

    当然如果把所有的主线程I/O都收集上来,这个数据量会非常大,所以我会添加“连续读写时间超过100毫秒”这个条件。之所以使用连续读写时间,是因为发现有不少案例是打开了文件句柄,但不是一次读写完的。

    在上报问题到后台时,为了能更好地定位解决问题,我通常还会把CPU使用率、其他线程的信息以及内存信息一并上报,辅助分析问题。

    2. 读写Buffer过小

    我们知道,对于文件系统是以block为单位读写,对于磁盘是以page为单位读写,看起来即使我们在应用程序上面使用很小的Buffer,在底层应该差别不大。那是不是这样呢?

    read(53, "*****************"\.\.\., 1024) = 1024       <0.000447>
    read(53, "*****************"\.\.\., 1024) = 1024       <0.000084>
    read(53, "*****************"\.\.\., 1024) = 1024       <0.000059>
    

    虽然后面两次系统调用的时间的确会少一些,但是也会有一定的耗时。如果我们的Buffer太小,会导致多次无用的系统调用和内存拷贝,导致read/write的次数增多,从而影响了性能。

    那应该选用多大的Buffer呢?我们可以跟据文件保存所挂载的目录的block size来确认Buffer大小,数据库中的pagesize就是这样确定的。

    new StatFs("/data").getBlockSize()
    

    所以我们最终选择的判断条件为:

    • buffer size小于block size,这里一般为4KB。
    • read/write的次数超过一定的阈值,例如5次,这主要是为了减少上报量。

    buffer size不应该小于4KB,那它是不是越大越好呢?你可以通过下面的命令做一个简单的测试,读取测试应用的iotest文件,它的大小是40M。其中bs就是buffer size,bs分别使用不同的值,然后观察耗时。

    // 每次测试之前需要手动释放缓存
    echo 3 > /proc/sys/vm/drop_caches
    time dd if=/data/data/com.sample.io/files/iotest of=/dev/null bs=4096
    
    1

    通过上面的数据大致可以看出来,Buffer的大小对文件读写的耗时有非常大的影响。耗时的减少主要得益于系统调用与内存拷贝的优化,Buffer的大小一般我推荐使用4KB以上。

    在实际应用中,ObjectOutputStream和ZipOutputStream都是一个非常经典的例子,ObjectOutputStream使用的buffer size非常小。而ZipOutputStream会稍微复杂一些,如果文件是Stored方式存储的,它会使用上层传入的buffer size。如果文件是Deflater方式存储的,它会使用DeflaterOutputStream的buffer size,这个大小默认是512Byte。

    你可以看到,如果使用BufferInputStream或者ByteArrayOutputStream后整体性能会有非常明显的提升。

    1

    正如我上一期所说的,准确评估磁盘真实的读写次数是比较难的。磁盘内部也会有很多的策略,例如预读。它可能发生超过你真正读的内容,预读在有大量顺序读取磁盘的时候,readahead可以大幅提高性能。但是大量读取碎片小文件的时候,可能又会造成浪费。

    你可以通过下面的这个文件查看预读的大小,一般是128KB。

    /sys/block/[disk]/queue/read_ahead_kb
    

    一般来说,我们可以利用/proc/sys/vm/block_dump或者/proc/diskstats的信息统计真正的磁盘读写次数。

    /proc/diskstats
    块设备名字|读请求次数|读请求扇区数|读请求耗时总和\.\.\.\.
    dm-0 23525 0 1901752 45366 0 0 0 0 0 33160 57393
    dm-1 212077 0 6618604 430813 1123292 0 55006889 3373820 0 921023 3805823
    

    3. 重复读

    微信之前在做模块化改造的时候,因为模块间彻底解耦了,很多模块会分别去读一些公共的配置文件。

    有同学可能会说,重复读的时候数据都是从Page Cache中拿到,不会发生真正的磁盘操作。但是它依然需要消耗系统调用和内存拷贝的时间,而且Page Cache的内存也很有可能被替换或者释放。

    你也可以用下面这个命令模拟Page Cache的释放。

    echo 3 > /proc/sys/vm/drop_caches
    

    如果频繁地读取某个文件,并且这个文件一直没有被写入更新,我们可以通过缓存来提升性能。不过为了减少上报量,我会增加以下几个条件:

    • 重复读取次数超过3次,并且读取的内容相同。
    • 读取期间文件内容没有被更新,也就是没有发生过write。

    加一层内存cache是最直接有效的办法,比较典型的场景是配置文件等一些数据模块的加载,如果没有内存cache,那么性能影响就比较大了。

    public String readConfig() {
      if (Cache != null) {
         return cache; 
      }
      cache = read("configFile");
      return cache;
    }
    

    4. 资源泄漏

    在崩溃分析中,我说过有部分的OOM是由于文件句柄泄漏导致。资源泄漏是指打开资源包括文件、Cursor等没有及时close,从而引起泄露。这属于非常低级的编码错误,但却非常普遍存在。

    如何有效的监控资源泄漏?这里我利用了Android框架中的StrictMode,StrictMode利用CloseGuard.java类在很多系统代码已经预置了埋点。

    到了这里,接下来还是查看源码寻找可以利用的Hook点。这个过程非常简单,CloseGuard中的REPORTER对象就是一个可以利用的点。具体步骤如下:

    • 利用反射,把CloseGuard中的ENABLED值设为true。
    • 利用动态代理,把REPORTER替换成我们定义的proxy。

    虽然在Android源码中,StrictMode已经预埋了很多的资源埋点。不过肯定还有埋点是没有的,比如MediaPlayer、程序内部的一些资源模块。所以在程序中也写了一个MyCloseGuard类,对希望增加监控的资源,可以手动增加埋点代码。

    I/O与启动优化

    通过I/O跟踪,可以拿到整个启动过程所有I/O操作的详细信息列表。我们需要更加的苛刻地检查每一处I/O调用,检查清楚是否每一处I/O调用都是必不可少的,特别是write()。

    当然主线程I/O、读写Buffer、重复读以及资源泄漏是首先需要解决的,特别是重复读,比如cpuinfo、手机内存这些信息都应该缓存起来。

    对于必不可少的I/O操作,我们需要思考是否有其他方式做进一步的优化。

    • 对大文件使用mmap或者NIO方式。MappedByteBuffer就是Java NIO中的mmap封装,正如上一期所说,对于大文件的频繁读写会有比较大的优化。
    • 安装包不压缩。对启动过程需要的文件,我们可以指定在安装包中不压缩,这样也会加快启动速度,但带来的影响是安装包体积增大。事实上Google Play非常希望我们不要去压缩library、resource、resource.arsc这些文件,这样对启动的内存和速度都会有很大帮助。而且不压缩文件带来只是安装包体积的增大,对于用户来说,Download size并没有增大。
    • Buffer复用。我们可以利用Okio开源库,它内部的ByteString和Buffer通过重用等技巧,很大程度上减少CPU和内存的消耗。
    • 存储结构和算法的优化。是否可以通过算法或者数据结构的优化,让我们可以尽量的少I/O甚至完全没有I/O。比如一些配置文件从启动完全解析,改成读取时才解析对应的项;替换掉XML、JSON这些格式比较冗余、性能比较较差的数据结构,当然在接下来我还会对数据存储这一块做更多的展开。

    2013年我在做Multidex优化的时候,发现代码中会先将classes2.dex从APK文件中解压出来,然后再压缩到classes2.zip文件中。classes2.dex做了一次无用的解压和压缩,其实根本没有必要。

    1

    那个时候通过研究ZIP格式的源码,我发现只要能构造出一个符合ZIP格式的文件,那就可以直接将classses2.dex的压缩流搬到classes2.zip中。整个过程没有任何一次解压和压缩,这个技术也同样应用到Tinker的资源合成中。

    总结

    今天我们学习了如何在应用层面监控I/O的使用情况,从实现上尝试了Java Hook和Native Hook两种方案,最终考虑到性能和兼容性,选择了Native Hook方案。

    对于Hook方案的选择,在同等条件下我会优先选择Java Hook方案。但无论采用哪种Hook方案,我们都需要耐心地查看源码、分析调用流程,从而寻找可以利用的地方。

    一套监控方案是只用在实验室自动化测试,还是直接交给用户线上使用,这两者的要求是不同的,后者需要99.9%稳定性,还要具备不影响用户体验的高性能才可以上线。从实验室到线上,需要大量的灰度测试以及反复的优化迭代过程。

    青山不改,绿水长流,希望能帮助到你

    相关文章

      网友评论

          本文标题:了解了Android I/O调优让你的应用突飞猛进(下篇)

          本文链接:https://www.haomeiwen.com/subject/rjepjrtx.html