美文网首页
Adaptive gradient descent withou

Adaptive gradient descent withou

作者: 馒头and花卷 | 来源:发表于2020-03-26 22:03 被阅读0次

    Malitsky Y, Mishchenko K. Adaptive gradient descent without descent[J]. arXiv: Optimization and Control, 2019.

    本文提出了一种自适应步长的梯度下降方法(以及多个变种方法), 并给了收敛性分析.

    主要内容

    主要问题:
    \tag{1} \min_x \: f(x).
    局部光滑的定义:
    若可微函数f(x)在任意有界区域内光滑,即
    \|\nabla f(x) - \nabla f(y)\| \le L_{\mathcal{C}} \|x-y\|, \quad \forall x, y \in \mathcal{C},
    其中\mathcal{C}有界.

    本文的一个基本假设是函数f(x)凸且局部光滑.

    算法1 AdGD

    在这里插入图片描述

    定理1 ADGD-L

    定理1. 假设f: \mathbb{R}^d \rightarrow \mathbb{R} 为凸函数且局部光滑. 则由算法1生成的序列(x^k)收敛到(1)的最优解, 且
    f(\hat{x}^k) - f_* \le \frac{D}{2S_k} = \mathcal{O}(\frac{1}{k}),
    其中\hat{x}^k := \frac{\sum_{i=1}^k \lambda_i x^i + \lambda_1 \theta_1 x^1}{S_k}, S_k:= \sum_{i=1}^k \lambda_i + \lambda_1 \theta.

    算法2

    在这里插入图片描述

    L已知的情况下, 我们可以对算法1进行改进.

    定理2

    定理2 假设f凸且L光滑, 则由算法(2)生成的序列(x^k)同样使得
    f(\hat{x}^k)-f_*=\mathcal{O}(\frac{1}{k})
    成立.

    算法3 ADGD-accel

    在这里插入图片描述

    这部分没有理论证明, 是作者基于Nesterov中的算法进行的改进.

    算法4 Adaptive SGD

    在这里插入图片描述

    这个算法是对SGD的一个改进.

    定理4

    在这里插入图片描述

    代码

    f(x, y) = x^2+50y^2, 起点为(30, 15).

    在这里插入图片描述
    
    
    """
    adgd.py
    """
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    State = "Test"
    
    class FuncMissingError(Exception): pass
    class StateNotMatchError(Exception): pass
    
    class AdGD:
    
        def __init__(self, x0, stepsize0, grad, func=None):
            self.func_grad = grad
            self.func = func
            self.points = [x0]
            self.points.append(self.calc_one(x0, self.calc_grad(x0),
                                             stepsize0))
            self.prestepsize = stepsize0
            self.theta = None
    
    
        def calc_grad(self, x):
            self.pregrad = self.func_grad(x)
            return self.pregrad
    
        def calc_one(self, x, grad, stepsize):
            return x - stepsize * grad
    
        def calc_stepsize(self, grad, pregrad):
            part2 = (
                np.linalg.norm(self.points[-1]
                              - self.points[-2]) /
                (np.linalg.norm(grad - pregrad) * 2)
    
            )
            if not self.theta:
                return part2
            else:
                part1 = np.sqrt(self.theta + 1) * self.prestepsize
                return min(part1, part2)
    
        def update_theta(self, stepsize):
            self.theta = stepsize / self.prestepsize
            self.prestepsize = stepsize
    
        def step(self):
            pregrad = self.pregrad
            prex = self.points[-1]
            grad = self.calc_grad(prex)
            stepsize = self.calc_stepsize(grad, pregrad)
            nextx = self.calc_one(prex, grad, stepsize)
            self.points.append(nextx)
            self.update_theta(stepsize)
    
        def multi_steps(self, times):
            for k in range(times):
                self.step()
    
        def plot(self):
            if self.func is None:
                raise FloatingPointError("func is not defined...")
            if State != "Test":
                raise StateNotMatchError()
            xs = np.array(self.points)
            x = np.linspace(-40, 40, 1000)
            y = np.linspace(-20, 20, 500)
            fig, ax = plt.subplots()
            X, Y = np.meshgrid(x, y)
            ax.contour(X, Y, self.func([X, Y]), colors='black')
            ax.plot(xs[:, 0], xs[:, 1], "+-")
            plt.show()
    
    
    class AdGDL(AdGD):
    
        def __init__(self, x0, L, grad, func=None):
            super(AdGDL, self).__init__(x0, 1 / L, grad, func)
            self.lipschitz = L
    
    
        def calc_stepsize(self, grad, pregrad):
            lk = (
                np.linalg.norm(grad - pregrad) /
                np.linalg.norm(self.points[-1]
                              - self.points[-2])
            )
            part2 = 1 / (self.prestepsize * self.lipschitz ** 2) \
                     + 1 / (2 * lk)
            if not self.theta:
                return part2
            else:
                part1 = np.sqrt(self.theta + 1) * self.prestepsize
                return min(part1, part2)
    
    
    
    class AdGDaccel(AdGD):
    
        def __init__(self, x0, stepsize0, convex0, grad, func=None):
            super(AdGDaccel, self).__init__(x0, stepsize0, grad, func)
            self.preconvex = convex0
            self.Theta = None
            self.prey = self.points[-1]
    
        def calc_convex(self, grad, pregrad):
            part2 = (
                (np.linalg.norm(grad - pregrad) * 2) /
                    np.linalg.norm(self.points[-1]
                            - self.points[-2])
            ) / 2
            if not self.Theta:
                return part2
            else:
                part1 = np.sqrt(self.Theta + 1) * self.preconvex
                return min(part1, part2)
    
        def calc_beta(self, stepsize, convex):
            part1 = 1 / stepsize
            part2 = convex
            return (part1 - part2) / (part1 + part2)
    
        def calc_more(self, y, beta):
            nextx = y + beta * (y - self.prey)
            self.prey = y
            return nextx
    
        def update_Theta(self, convex):
            self.Theta = convex / self.preconvex
            self.preconvex = convex
    
        def step(self):
            pregrad = self.pregrad
            prex = self.points[-1]
            grad = self.calc_grad(prex)
            stepsize = self.calc_stepsize(grad, pregrad)
            convex = self.calc_convex(grad, pregrad)
            beta = self.calc_beta(stepsize, convex)
            y = self.calc_one(prex, grad, stepsize)
            nextx = self.calc_more(y, beta)
            self.points.append(nextx)
            self.update_theta(stepsize)
            self.update_Theta(convex)
    
    

    config.json:

    
    
    {
      "AdGD": {
        "stepsize0": 0.001
      },
      "AdGDL": {
        "L": 100
      },
      "AdGDaccel": {
        "stepsize0": 0.001,
        "convex0": 2.0
      }
    }
    
    
    
    
    """
    测试代码
    """
    
    
    
    import numpy as np
    import matplotlib.pyplot as plt
    import json
    from adgd import AdGD, AdGDL, AdGDaccel
    
    
    
    with open("config.json", encoding="utf-8") as f:
        configs = json.load(f)
    
    partial_x = lambda x: 2 * x
    partial_y = lambda y: 100 * y
    grad = lambda x: np.array([partial_x(x[0]),
                                  partial_y(x[1])])
    func = lambda x: x[0] ** 2 + 50 * x[1] ** 2
    
    
    fig, ax = plt.subplots()
    x = np.linspace(-10, 40, 500)
    y = np.linspace(-10, 20, 500)
    X, Y = np.meshgrid(x, y)
    ax.contour(X, Y, func([X, Y]), colors='black')
    
    def process(methods, times=50):
        for method in methods:
            method.multi_steps(times)
    
    def initial(methods, **kwargs):
        instances = []
        for method in methods:
            config = configs[method.__name__]
            config.update(kwargs)
            instances.append(method(**config))
        return instances
    
    def plot(methods):
        for method in methods:
            xs = np.array(method.points)
            ax.plot(xs[:, 0], xs[:, 1], "+-", label=method.__class__.__name__)
        plt.legend()
        plt.show()
    
    x0 = np.array([30., 15.])
    
    
    
    
    methods = [AdGD, AdGDL, AdGDaccel]
    instances = initial(methods, x0=x0, grad=grad, func=func)
    process(instances)
    plot(instances)
    
    
    

    相关文章

      网友评论

          本文标题:Adaptive gradient descent withou

          本文链接:https://www.haomeiwen.com/subject/rkihuhtx.html