美文网首页
二叉查找树

二叉查找树

作者: stephen_wu | 来源:发表于2020-04-03 11:30 被阅读0次

一.定义

二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值. 这样, 二叉查找树就支持了快速的查找, 以及插入和删除.所以二叉查找树也被叫做二叉搜索树.

image

二.二叉查找树的操作

1.查找
先取根节点,如果它等于我们要查找的数据,那就返回。如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数据比根节点的值大,那就在右子树中递归查找。

public class BinarySearchTree {
    private static Node tree;
    public static void main(String[] args) {
        tree = new Node(13);
        Node node21 = new Node(10);
        Node node22 = new Node(16);
        Node node31 = new Node(9);
        Node node32 = new Node(11);
        Node node33 = new Node(14);
        tree.left = node21;
        tree.right = node22;
        node21.left = node31;
        node21.right = node32;
        node22.left = node33;
        System.out.println(find(11).data);
    }


    public static Node find(int data) {
        Node p = tree;
        while (p != null) {
            if (data < p.data) {
                p = p.left;
            } else if (data > p.data) {
                p = p.right;
            } else {
                return p;
            }
        }
        return null;
    }

    private static class Node {
        private int data;
        private Node left;
        private Node right;
        public Node(int data) {
            this.data = data;
        }
    }
}

2.插入
二叉查找树的插入过程有点类似查找操作。新插入的数据一般都是在叶子节点上,所以我们只需要从根节点开始,依次比较要插入的数据和节点的大小关系。

public void insert(int data) {
        if (tree == null) {
            tree = new Node(data);
            return;
        }
        Node p = tree;
        while (p != null) {
            if (data > p.data) {
                if (p.right == null) {
                    p.right = new Node(data);
                    return;
                }
                p = p.right;
            } else {//data<p.data 
                if (p.left == null) {
                    p.left = new Node(data);
                    return;
                }
                p = p.left;
            }
        }
    }

3.删除
删除比较复杂, 分为三种情况讨论.
第一种情况是,如果要删除的节点没有子节点,我们只需要直接将父节点中,指向要删除节点的指针置为 null。比如图中的删除节点 55。

第二种情况是,如果要删除的节点只有一个子节点(只有左子节点或者右子节点),我们只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如图中的删除节点 13。

第三种情况是,如果要删除的节点有两个子节点,这就比较复杂了。我们需要找到这个节点的右子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点,因为最小节点肯定没有左子节点(如果有左子结点,那就不是最小节点了),所以,我们可以应用上面两条规则来删除这个最小节点。比如图中的删除节点 18。


image.png
    public void delete(int data) {
        Node p = tree; // p指向要删除的节点,初始化指向根节点
        Node pp = null; // pp记录的是p的父节点
        while (p != null && p.data != data) {
            pp = p;
            if (data > p.data) p = p.right;
            else p = p.left;
        }
        if (p == null) return; // 没有找到

        // 要删除的节点有两个子节点
        if (p.left != null && p.right != null) { // 查找右子树中最小节点
            Node minP = p.right;
            Node minPP = p; // minPP表示minP的父节点
            while (minP.left != null) {
                minPP = minP;
                minP = minP.left;
            }
            p.data = minP.data; // 将minP的数据替换到p中
            p = minP; // 下面就变成了删除minP了
            pp = minPP;
        }

        // 删除节点是叶子节点或者仅有一个子节点
        Node child; // p的子节点
        if (p.left != null) child = p.left;
        else if (p.right != null) child = p.right;
        else child = null;

        if (pp == null) tree = child; // 删除的是根节点
        else if (pp.left == p) pp.left = child;
        else pp.right = child;
    }
  1. 其他操作
    二叉查找树中还可以支持快速地查找最大节点和最小节点、前驱节点和后继节点。

二叉查找树除了支持上面几个操作之外,还有一个重要的特性,就是中序遍历二叉查找树,可以输出有序的数据序列,时间复杂度是 O(n),非常高效。因此,二叉查找树也叫作二叉排序树

三.时间复杂度

跟树的高度成正比, 如果退化成了链表, 则时间复杂度会退化到O(n), 如果是平衡的, 则时间复杂度是O(logn)

相关文章

  • 极客时间数据结构与算法之美笔记25~26

    二叉树到二叉查找树,是为了查找数据的效率接近logN。 二叉查找树到平衡二叉查找树,是为了防止二叉查找树沦为链表。...

  • 二叉查找树

    1)二叉查找树是什么?2)二叉查找树的插入、删除、查找?3)Go代码实现 一、二叉查找树是什么?二叉查找树(BST...

  • 红黑树

    红黑树的本质就是一棵二叉查找树,所以先从二叉查找树来了解起。 二叉查找树 二叉查找树又称有序二叉树,具有以下特性:...

  • 二叉查找树

    二叉查找树,又称二叉搜索树 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: ...

  • 99-数据结构和算法

    难点:二叉树的遍历 红黑树 图的遍历 二叉查找树二叉查找树(binary search tree),二叉查找树在二...

  • 11-二叉查找树

    二叉查找树 1.什么是二叉查找树? 二叉查找树是一种支持数据动态的插入,删除,查找的数据结构。 2.二叉查找树的设...

  • 17张图带你解析红黑树的原理!保证你能看懂!

    二叉查找树 由于红黑树本质上就是一棵二叉查找树,所以在了解红黑树之前,咱们先来看下二叉查找树。 二叉查找树(Bin...

  • 二叉树 堆 2019-04-17

    二叉树 实现一个二叉查找树,并且支持插入、删除、查找操作 实现查找二叉查找树中某个节点的后继、前驱节点 实现二叉树...

  • 6. 二叉树创建-查找

    1. 递归方式实现二叉树的构建2. 树、二叉树、二叉查找树3. 二叉树排序树的理解4. 二叉查找树5. 二叉树的查找

  • 数据结构中的各种树

    一、二叉树 二、二叉查找树(又称二叉排序树,二叉搜索树) 二叉查找树(Binary Search Tree)它或者...

网友评论

      本文标题:二叉查找树

      本文链接:https://www.haomeiwen.com/subject/rlqhphtx.html