美文网首页
Android消息机制原理解析

Android消息机制原理解析

作者: HappyGhh | 来源:发表于2018-03-13 16:28 被阅读0次

Android消息机制,主要指Handler的运行机制以及Handler所附带的MessageQueue和Looper的工作过程。

Handler:主要作用是将一个任务切换到指定的线程中去执行。Android中UI控件不是线程安全的,所以在Android中不允许子线程访问UI,而当子线程需要访问UI时,Android提供了Handler来解决这个问题。

MessageQueue消息队列:存储消息列表,内部存储结构是单链表的数据结构

Looper循环:以无限循环的形式去查找是否有新消息,如果有就处理消息,如果没有就一直等待。

ThreadLocal的工作原理:

ThreadLocal是一个线程内部数据存储类,通过它可以在指定线程中存储数据,数据存储以后,只有在指定线程中可以获取到存储的数据,对于其他线程则无法获取到数据。
Handler为什么要用到这个呢?因为对于Handler来说,需要获取到当前线程的Looper,而Looper的作用域就是当前线程,并且在不同线程有不同的Looper,这个时候可以方便的通过ThreadLocal对Looper进行存取。
大概了解ThreadLocal后,下面分析下ThreadLocal的内部实现,ThreadLocal是一个泛型类,只要弄清楚ThreadLocal的get()和set()方法就可以明白它的工作原理。

  public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

set()方法中,首先是获取到当前使用这个ThreadLocal对象的线程,然后根据当前线程获取对应的ThreadLocalMap 对象,如果没有ThreadLocalMap 对象,则创建一个,如果有则把数据存入ThreadLocalMap 对象中。
getMap()方法返回的是Thread.threadLocals,在Thread内部我们发现threadLocals变量是用来存储ThreadLocal的数据,所以getMap()直接返回这个属性,当该属性为空时,通过createMap(t, value)来给Thread.threadLocals赋值。

    /* ThreadLocal values pertaining to this thread. This map is maintained by the ThreadLocal class. */
    ThreadLocal.ThreadLocalMap threadLocals = null;

ThreadLocalMap类是ThreadLocal类的一个静态内部类,在ThreadLocalMap内部有一个Entry[]数组,ThreadLocal存储的值就保存在这个数组里。Entry类是一个弱引用类,节省了内存。下面是table的存储规则

 private void set(ThreadLocal<?> key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

接下来看get()方法

 public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

get()方法仍然是通过当前线程获取到ThreadLocalMap对象,然后获取之前存储的值,如果ThreadLocalMap对象为空,则使用默认值null

   private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }

  protected T initialValue() {
        return null;
    }

从ThreadLocal的set 和get 方法,它们所操作的对象都是当前线程ThreadLocalMap对象的Entry[] table数组,因此在不同线程中访问同一个ThreadLocal的set 和get 方法,它们对ThreadLocal所做的操作仅限于各自线程的内部。这也是为什么ThreadLocal可以在多个线程中互不干扰地存储和修改数据。

MessageQueue工作原理

MessageQueue消息队列,主要包含两个操作:插入和读取。enqueueMessage(Message msg, long when)往消息队列中插入一条消息,next()从消息队列中去除一条消息并将其从消息队列中一处。

 boolean enqueueMessage(Message msg, long when) {

//判断Message是否绑定一个Handler对象(msg.target)
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }

//判断当前消息是否正在使用
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {

// 判断该消息是否正在退出,如果正在退出则回收当前消息并返回false
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);

//回收当前消息
                msg.recycle();
                return false;
            }

//设置当前消息正在使用
            msg.markInUse();
//配置当前消息的一些信息
            msg.when = when;
            Message p = mMessages; //第一次执行到这里时,mMessages为null
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
//当消息队列有消息时
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
//循环找到最后一个message
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

next(),当消息队列里有消息时,则会取出这个message,即mMessages。当满足条件时,则取出这个mMessages(通过Message msg = mMessages赋值后返回msg),然后把mMessages赋值为msg.next,即把下一个消息赋值成mMessages。通过这个过程就把当前消息处理完了,并且把处理过的消息删除掉了。

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

Looper的工作原理

Looper不断地从MessageQueue中查看是否有新消息,如果有新消息就立刻处理,否则就一直阻塞在哪里。Looper的构造函数中创建了一个MessageQueue,并且保存了当前线程。

  private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

Handler工作需要Looper,没有Looper线程会报错,那么如何为一个线程创建Looper呢?其实通过Looper.prepare()就可以为当前线程创建一个Looper,接着通过Looper.loop()方法来开启消息循环。

   private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

prepare方法,就是把一个Looper对象保存到了ThreadLocal

 public static void loop() {
//获取当前线程的Looper对象
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
//把Looper对象绑定到MessageQueue
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

//死循环,
        for (;;) {
            Message msg = queue.next(); // might block
//当MessageQueue为空时,则跳出循环loop结束
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
//如果有消息,则把这个消息通过Handler(即msg.target)的dispatchMessage方法来处理这个消息,这样就成功将代码逻辑切换到制定线程中
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

上述通过prepare方法和loop方法只是对普通线程来说的,对于主线程来说,由于主线程情况比较复杂,所以提供了prepareMainLooper来给ActivityThread创建Looper对象,但是其本质也是通过prepare来实现的,这个可以自己去看源码。同时,也可以通过getMainLooper方法在其他任何地方获取到主线程的Looper对象。

 public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }

Handler的工作原理

Handler的主要工作包含消息的发送和接收过程。消息的发送可通过一系列post、send方法来实现。

send.png post.png
  public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

   private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

可以看出发送消息其实就是在MessageQueue中插入了一条消息。MessageQueue的next()方法就会返回这条消息给Looper,Looper接收消息后就开始处理,最终消息由Looper交由Handler处理,即调用Handler的dispatchMessage方法,这是Handler就进入处理消息阶段。

 public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

-----------------------------------------------------
 private static void handleCallback(Message message) {
        message.callback.run();
    }
--------------------------------------------------------

Handler处理消息过程;
首先检查Messager的callback是否为null,,不为null就通过handleCallback来处理消息。 message.callback是一个Runnable对象,实际上就是Handler的post方法所传递的Runnable对象。其次,检查mCallback是否为null,不为null调用mCallback.handleMessage(msg)来处理消息,最后,调用handleMessage来处理消息。

总结

Android的消息机制的总体流程就是:Handler向MessageQueue发送一条消息(即插入一条消息),MessageQueue通过next方法把消息传给Looper,Looper收到消息后开始处理,然后最终交给Handler自己去处理。换句话说就是:Handler给自己发送了一条消息,然后自己的handleMessage方法处理消息,只是中间过程经过了MessageQueue和Looper。调用的方法过程如下:Handler.sendMessage方法–>Handler.enqueueMessage–>MessageQueue.next–>Looper.loop–>handler.dispatchMessage–>Handler.handleMessage(或者Runnable的run方法或者Callback.handleMessage)。

参考:android消息机制原理详解
《Android开发艺术探索》

相关文章

  • Android消息机制与类加载

    Android消息机制原理Android类加载Android热修复 Android消息机制    Handler、...

  • BlockCancary原理解析

    原理解析 Android Framework的很多机制都是通过消息传递机制来完成的,例如UI绘制更新,生命周期调用...

  • 代理模式

    Android插件化原理解析——Hook机制之动态代理 Android插件化原理解析——概要 Retrofit2 ...

  • Android源码解析

    Android源码解析之(一)–>Android项目构建过程 Android源码解析之(二)–>异步消息机制 An...

  • Android消息机制原理解析

    Android消息机制,主要指Handler的运行机制以及Handler所附带的MessageQueue和Loop...

  • Android 面试准备

    Android Android系统总览Android系统开篇 HandlerAndroid异步消息处理机制完全解析...

  • Handler消息机制解析

    Handler消息机制解析 Android提供用来更新UI的一套机制,也是一套消息处理机制,可以发送消息和处理消息...

  • 收集_Binder机制

    为什么 Android 要采用 Binder 作为 IPC 机制?AIDL原理解析Android中AIDL的工作原...

  • Android消息机制(Handler原理)-完全解析

    一 概述 Handler主要被用来在子线程中访问UI线程,在ViewRootImpl中有一个checkThread...

  • Android Handler消息机制原理解析

    一、前言: 本文主要详细去解读Android开发中最常使用的Handler,以及使用过程中遇到的各种各样的疑问。 ...

网友评论

      本文标题:Android消息机制原理解析

      本文链接:https://www.haomeiwen.com/subject/rmcofftx.html