Go是一门简单有趣的语言,但与其他语言类似,它会有一些技巧。。。这些技巧的绝大部分并不是Go的缺陷造成的。如果你以前使用的是其他语言,那么这其中的有些错误就是很自然的陷阱。其它的是由错误的假设和缺少细节造成的。
如果你花时间学习这门语言,阅读官方说明、wiki、邮件列表讨论、大量的优秀博文和Rob Pike的展示,以及源代码,这些技巧中的绝大多数都是显而易见的。尽管不是每个人都是以这种方式开始学习的,但也没关系。如果你是Go语言新人,那么这里的信息将会节约你大量的调试代码的时间。
目录
-
初级篇
-
开大括号不能放在单独的一行
-
未使用的变量
-
未使用的Imports
-
简式的变量声明仅可以在函数内部使用
-
使用简式声明重复声明变量
-
偶然的变量隐藏Accidental Variable Shadowing
-
不使用显式类型,无法使用“nil”来初始化变量
-
使用“nil” Slices and Maps
-
Map的容量
-
字符串不会为“nil”
-
Array函数的参数
-
在Slice和Array使用“range”语句时的出现的不希望得到的值
-
Slices和Arrays是一维的
-
访问不存在的Map Keys
-
Strings无法修改
-
String和Byte Slice之间的转换
-
String和索引操作
-
字符串不总是UTF8文本
-
字符串的长度
-
在多行的Slice、Array和Map语句中遗漏逗号
-
log.Fatal和log.Panic不仅仅是Log
-
内建的数据结构操作不是同步的
-
String在“range”语句中的迭代值
-
对Map使用“for range”语句迭代
-
"switch"声明中的失效行为
-
自增和自减
-
按位NOT操作
-
操作优先级的差异
-
未导出的结构体不会被编码
-
有活动的Goroutines下的应用退出
-
向无缓存的Channel发送消息,只要目标接收者准备好就会立即返回
-
向已关闭的Channel发送会引起Panic
-
使用"nil" Channels
-
传值方法的接收者无法修改原有的值
-
进阶篇
-
关闭HTTP的响应
-
关闭HTTP的连接
-
比较Structs, Arrays, Slices, and Maps
-
从Panic中恢复
-
在Slice, Array, and Map "range"语句中更新引用元素的值
-
在Slice中"隐藏"数据
-
Slice的数据“毁坏”
-
"走味的"Slices
-
类型声明和方法
-
从"for switch"和"for select"代码块中跳出
-
"for"声明中的迭代变量和闭包
-
Defer函数调用参数的求值
-
被Defer的函数调用执行
-
失败的类型断言
-
阻塞的Goroutine和资源泄露
-
高级篇
-
使用指针接收方法的值的实例
-
更新Map的值
-
"nil" Interfaces和"nil" Interfaces的值
-
栈和堆变量
-
GOMAXPROCS, 并发, 和并行
-
读写操作的重排顺序
-
优先调度
初级篇
开大括号不能放在单独的一行
- level: beginner
在大多数其他使用大括号的语言中,你需要选择放置它们的位置。Go的方式不同。你可以为此感谢下自动分号的注入(没有预读)。是的,Go中也是有分号的:-)
失败的例子:
package main
import"fmt"
func main(){//error, can't have the opening brace on a separate line
fmt.Println("hello there!")}
编译错误:
/tmp/sandbox826898458/main.go:6: syntax error: unexpected semicolon or newline before {
有效的例子:
package main
import"fmt"
func main(){
fmt.Println("works!")}
未使用的变量
- level: beginner
如果你有未使用的变量,代码将编译失败。当然也有例外。在函数内一定要使用声明的变量,但未使用的全局变量是没问题的。
如果你给未使用的变量分配了一个新的值,代码还是会编译失败。你需要在某个地方使用这个变量,才能让编译器愉快的编译。
Fails:
package main
var gvar int//not an error
func main(){var one int//error, unused variable
two :=2//error, unused variablevar three int//error, even though it's assigned 3 on the next line
three =3}
Compile Errors:
/tmp/sandbox473116179/main.go:6: one declared andnot used /tmp/sandbox473116179/main.go:7: two declared andnot used /tmp/sandbox473116179/main.go:8: three declared andnot used
Works:
package main
import"fmt"
func main(){var one int
_ = one
two :=2
fmt.Println(two)var three int
three =3
one = three
var four int
four = four
}
另一个选择是注释掉或者移除未使用的变量 :-)
未使用的Imports
- level: beginner
如果你引入一个包,而没有使用其中的任何函数、接口、结构体或者变量的话,代码将会编译失败。
如果你真的需要引入的包,你可以添加一个下划线标记符, _
,来作为这个包的名字,从而避免编译失败。下滑线标记符用于引入,但不使用。
Fails:
package main
import("fmt""log""time")
func main(){}
Compile Errors:
/tmp/sandbox627475386/main.go:4: imported andnot used:"fmt"/tmp/sandbox627475386/main.go:5: imported andnot used:"log"/tmp/sandbox627475386/main.go:6: imported andnot used:"time"
Works:
package main
import(
_ "fmt""log""time")var _ = log.Println
func main(){
_ = time.Now}
另一个选择是移除或者注释掉未使用的imports :-)
简式的变量声明仅可以在函数内部使用
- level: beginner
Fails:
package main
myvar :=1//error
func main(){}
Compile Error:
/tmp/sandbox265716165/main.go:3: non-declaration statement outside function body
Works:
package main
var myvar =1
func main(){}
使用简式声明重复声明变量
- level: beginner
你不能在一个单独的声明中重复声明一个变量,但在多变量声明中这是允许的,其中至少要有一个新的声明变量。
重复变量需要在相同的代码块内,否则你将得到一个隐藏变量。
Fails:
package main
func main(){
one :=0
one :=1//error}
Compile Error:
/tmp/sandbox706333626/main.go:5:nonew variables on left side of :=
Works:
package main
func main(){
one :=0
one, two :=1,2
one,two = two,one
}
偶然的变量隐藏Accidental Variable Shadowing
- level: beginner
短式变量声明的语法如此的方便(尤其对于那些使用过动态语言的开发者而言),很容易让人把它当成一个正常的分配操作。如果你在一个新的代码块中犯了这个错误,将不会出现编译错误,但你的应用将不会做你所期望的事情。
package main
import"fmt"
func main(){
x :=1
fmt.Println(x)//prints 1{
fmt.Println(x)//prints 1
x :=2
fmt.Println(x)//prints 2}
fmt.Println(x)//prints 1 (bad if you need 2)}
即使对于经验丰富的Go开发者而言,这也是一个非常常见的陷阱。这个坑很容易挖,但又很难发现。
不使用显式类型,无法使用“nil”来初始化变量
- level: beginner
“nil”标志符用于表示interface、函数、maps、slices和channels的“零值”。如果你不指定变量的类型,编译器将无法编译你的代码,因为它猜不出具体的类型。
Fails:
package main
func main(){var x =nil//error
_ = x
}
Compile Error:
/tmp/sandbox188239583/main.go:4:use of untyped nil
Works:
package main
func main(){var x interface{}=nil
_ = x
}
使用“nil” Slices and Maps
- level: beginner
在一个“nil”的slice中添加元素是没问题的,但对一个map做同样的事将会生成一个运行时的panic。
Works:
package main
func main(){var s []int
s = append(s,1)}
Fails:
package main
func main(){var m map[string]int
m["one"]=1//error}
Map的容量
- level: beginner
你可以在map创建时指定它的容量,但你无法在map上使用cap()函数。
Fails:
package main
func main(){
m := make(map[string]int,99)
cap(m)//error}
Compile Error:
/tmp/sandbox326543983/main.go:5: invalid argument m (type map[string]int)for cap
字符串不会为“nil”
- level: beginner
这对于经常使用“nil”分配字符串变量的开发者而言是个需要注意的地方。
Fails:
package main
func main(){var x string=nil//errorif x ==nil{//error
x ="default"}}
Compile Errors:
/tmp/sandbox630560459/main.go:4: cannot usenilas type stringin assignment /tmp/sandbox630560459/main.go:6: invalid operation: x ==nil(mismatched types stringandnil)
Works:
package main
func main(){var x string//defaults to "" (zero value)if x ==""{
x ="default"}}
Array函数的参数
-level: beginner
如果你是一个C或则C++开发者,那么数组对你而言就是指针。当你向函数中传递数组时,函数会参照相同的内存区域,这样它们就可以修改原始的数据。Go中的数组是数值,因此当你向函数中传递数组时,函数会得到原始数组数据的一份复制。如果你打算更新数组的数据,这将会是个问题。
package main
import"fmt"
func main(){
x :=[3]int{1,2,3}
func(arr [3]int){
arr[0]=7
fmt.Println(arr)//prints [7 2 3]}(x)
fmt.Println(x)//prints [1 2 3] (not ok if you need [7 2 3])}
如果你需要更新原始数组的数据,你可以使用数组指针类型。
package main
import"fmt"
func main(){
x :=[3]int{1,2,3}
func(arr *[3]int){(*arr)[0]=7
fmt.Println(arr)//prints &[7 2 3]}(&x)
fmt.Println(x)//prints [7 2 3]}
另一个选择是使用slice。即使你的函数得到了slice变量的一份拷贝,它依旧会参照原始的数据。
package main
import"fmt"
func main(){
x :=[]int{1,2,3}
func(arr []int){
arr[0]=7
fmt.Println(arr)//prints [7 2 3]}(x)
fmt.Println(x)//prints [7 2 3]}
在Slice和Array使用“range”语句时的出现的不希望得到的值
- level: beginner
如果你在其他的语言中使用“for-in”或者“foreach”语句时会发生这种情况。Go中的“range”语法不太一样。它会得到两个值:第一个值是元素的索引,而另一个值是元素的数据。
Bad:
package main
import"fmt"
func main(){
x :=[]string{"a","b","c"}for v := range x {
fmt.Println(v)//prints 0, 1, 2}}
Good:
package main
import"fmt"
func main(){
x :=[]string{"a","b","c"}for _, v := range x {
fmt.Println(v)//prints a, b, c}}
Slices和Arrays是一维的
- level: beginner
看起来Go好像支持多维的Array和Slice,但不是这样的。尽管可以创建数组的数组或者切片的切片。对于依赖于动态多维数组的数值计算应用而言,Go在性能和复杂度上还相距甚远。
你可以使用纯一维数组、“独立”切片的切片,“共享数据”切片的切片来构建动态的多维数组。
如果你使用纯一维的数组,你需要处理索引、边界检查、当数组需要变大时的内存重新分配。
使用“独立”slice来创建一个动态的多维数组需要两步。首先,你需要创建一个外部的slice。然后,你需要分配每个内部的slice。内部的slice相互之间独立。你可以增加减少它们,而不会影响其他内部的slice。
package main
func main(){
x :=2
y :=4
table := make([][]int,x)for i:= range table {
table[i]= make([]int,y)}}
使用“共享数据”slice的slice来创建一个动态的多维数组需要三步。首先,你需要创建一个用于存放原始数据的数据“容器”。然后,你再创建外部的slice。最后,通过重新切片原始数据slice来初始化各个内部的slice。
package main
import"fmt"
func main(){
h, w :=2,4
raw := make([]int,h*w)for i := range raw {
raw[i]= i
}
fmt.Println(raw,&raw[4])//prints: [0 1 2 3 4 5 6 7] <ptr_addr_x>
table := make([][]int,h)for i:= range table {
table[i]= raw[i*w:i*w + w]}
fmt.Println(table,&table[1][0])//prints: [[0 1 2 3] [4 5 6 7]] <ptr_addr_x>}
关于多维array和slice已经有了专门申请,但现在看起来这是个低优先级的特性。
访问不存在的Map Keys
-level: beginner
这对于那些希望得到“nil”标示符的开发者而言是个技巧(和其他语言中做的一样)。如果对应的数据类型的“零值”是“nil”,那返回的值将会是“nil”,但对于其他的数据类型是不一样的。检测对应的“零值”可以用于确定map中的记录是否存在,但这并不总是可信(比如,如果在二值的map中“零值”是false,这时你要怎么做)。检测给定map中的记录是否存在的最可信的方法是,通过map的访问操作,检查第二个返回的值。
Bad:
package main
import"fmt"
func main(){
x := map[string]string{"one":"a","two":"","three":"c"}if v := x["two"]; v ==""{//incorrect
fmt.Println("no entry")}}
Good:
package main
import"fmt"
func main(){
x := map[string]string{"one":"a","two":"","three":"c"}if _,ok := x["two"];!ok {
fmt.Println("no entry")}}
Strings无法修改
- level: beginner
尝试使用索引操作来更新字符串变量中的单个字符将会失败。string是只读的byte slice(和一些额外的属性)。如果你确实需要更新一个字符串,那么使用byte slice,并在需要时把它转换为string类型。
Fails:
package main
import"fmt"
func main(){
x :="text"
x[0]='T'
fmt.Println(x)}
Compile Error:
/tmp/sandbox305565531/main.go:7: cannot assign to x[0]
Works:
package main
import"fmt"
func main(){
x :="text"
xbytes :=[]byte(x)
xbytes[0]='T'
fmt.Println(string(xbytes))//prints Text}
需要注意的是:这并不是在文字string中更新字符的正确方式,因为给定的字符可能会存储在多个byte中。如果你确实需要更新一个文字string,先把它转换为一个rune slice。即使使用rune slice,单个字符也可能会占据多个rune,比如当你的字符有特定的重音符号时就是这种情况。这种复杂又模糊的“字符”本质是Go字符串使用byte序列表示的原因。
String和Byte Slice之间的转换
- level: beginner
当你把一个字符串转换为一个byte slice(或者反之)时,你就得到了一个原始数据的完整拷贝。这和其他语言中cast操作不同,也和新的slice变量指向原始byte slice使用的相同数组时的重新slice操作不同。
Go在 []byte
到 string
和 string
到 []byte
的转换中确实使用了一些优化来避免额外的分配(在todo列表中有更多的优化)。
第一个优化避免了当 []byte
key用于在 map[string]
集合中查询时的额外分配: m[string(key)]
。
第二个优化避免了字符串转换为 []byte
后在 for range
语句中的额外分配: for i,v := range []byte(str){...}
。
String和索引操作
- level: beginner
字符串上的索引操作返回一个byte值,而不是一个字符(和其他语言中的做法一样)。
package main
import"fmt"
func main(){
x :="text"
fmt.Println(x[0])//print 116
fmt.Printf("%T",x[0])//prints uint8}
如果你需要访问特定的字符串“字符”(unicode编码的points/runes),使用 for range
。官方的“unicode/utf8”包和实验中的utf8string包(golang.org/x/exp/utf8string)也可以用。utf8string包中包含了一个很方便的 At()
方法。把字符串转换为rune的切片也是一个选项。
字符串不总是UTF8文本
- level: beginner
字符串的值不需要是UTF8的文本。它们可以包含任意的字节。只有在string literal使用时,字符串才会是UTF8。即使之后它们可以使用转义序列来包含其他的数据。
为了知道字符串是否是UTF8,你可以使用“unicode/utf8”包中的 ValidString()
函数。
package main
import("fmt""unicode/utf8")
func main(){
data1 :="ABC"
fmt.Println(utf8.ValidString(data1))//prints: true
data2 :="A\xfeC"
fmt.Println(utf8.ValidString(data2))//prints: false}
字符串的长度
- level: beginner
让我们假设你是Python开发者,你有下面这段代码:
data = u'♥'print(len(data))#prints: 1
当把它转换为Go代码时,你可能会大吃一惊。
package main
import"fmt"
func main(){
data :="♥"
fmt.Println(len(data))//prints: 3}
内建的 len()
函数返回byte的数量,而不是像Python中计算好的unicode字符串中字符的数量。
要在Go中得到相同的结果,可以使用“unicode/utf8”包中的 RuneCountInString()
函数。
package main
import("fmt""unicode/utf8")
func main(){
data :="♥"
fmt.Println(utf8.RuneCountInString(data))//prints: 1}
理论上说 RuneCountInString()
函数并不返回字符的数量,因为单个字符可能占用多个rune。
package main
import("fmt""unicode/utf8")
func main(){
data :="é"
fmt.Println(len(data))//prints: 3
fmt.Println(utf8.RuneCountInString(data))//prints: 2}
在多行的Slice、Array和Map语句中遗漏逗号
- level: beginner
Fails:
package main
func main(){
x :=[]int{1,2//error}
_ = x
}
Compile Errors:
/tmp/sandbox367520156/main.go:6: syntax error: need trailing comma before newline in composite literal /tmp/sandbox367520156/main.go:8: non-declaration statement outside function body /tmp/sandbox367520156/main.go:9: syntax error: unexpected }
Works:
package main
func main(){
x :=[]int{1,2,}
x = x
y :=[]int{3,4,}//no error
y = y
}
当你把声明折叠到单行时,如果你没加末尾的逗号,你将不会得到编译错误。
log.Fatal和log.Panic不仅仅是Log
- level: beginner
Logging库一般提供不同的log等级。与这些logging库不同,Go中log包在你调用它的 Fatal*()
和 Panic*()
函数时,可以做的不仅仅是log。当你的应用调用这些函数时,Go也将会终止应用 :-)
package main
import"log"
func main(){
log.Fatalln("Fatal Level: log entry")//app exits here
log.Println("Normal Level: log entry")}
内建的数据结构操作不是同步的
- level: beginner
即使Go本身有很多特性来支持并发,并发安全的数据集合并不是其中之一 :-)确保数据集合以原子的方式更新是你的职责。Goroutines和channels是实现这些原子操作的推荐方式,但你也可以使用“sync”包,如果它对你的应用有意义的话。
String在“range”语句中的迭代值
- level: beginner
索引值(“range”操作返回的第一个值)是返回的第二个值的当前“字符”(unicode编码的point/rune)的第一个byte的索引。它不是当前“字符”的索引,这与其他语言不同。注意真实的字符可能会由多个rune表示。如果你需要处理字符,确保你使用了“norm”包(golang.org/x/text/unicode/norm)。
string变量的 for range
语句将会尝试把数据翻译为UTF8文本。对于它无法理解的任何byte序列,它将返回0xfffd runes(即unicode替换字符),而不是真实的数据。如果你任意(非UTF8文本)的数据保存在string变量中,确保把它们转换为byte slice,以得到所有保存的数据。
package main
import"fmt"
func main(){
data :="A\xfe\x02\xff\x04"for _,v := range data {
fmt.Printf("%#x ",v)}//prints: 0x41 0xfffd 0x2 0xfffd 0x4 (not ok)
fmt.Println()for _,v := range []byte(data){
fmt.Printf("%#x ",v)}//prints: 0x41 0xfe 0x2 0xff 0x4 (good)}
对Map使用“for range”语句迭代
- level: beginner
如果你希望以某个顺序(比如,按key值排序)的方式得到元素,就需要这个技巧。每次的map迭代将会生成不同的结果。Go的runtime有心尝试随机化迭代顺序,但并不总会成功,这样你可能得到一些相同的map迭代结果。所以如果连续看到5个相同的迭代结果,不要惊讶。
package main
import"fmt"
func main(){
m := map[string]int{"one":1,"two":2,"three":3,"four":4}for k,v := range m {
fmt.Println(k,v)}}
而且如果你使用Go的游乐场(https://play.golang.org/),你将总会得到同样的结果,因为除非你修改代码,否则它不会重新编译代码。
"switch"声明中的失效行为
- level: beginner
在“switch”声明语句中的“case”语句块在默认情况下会break。这和其他语言中的进入下一个“next”代码块的默认行为不同。
package main
import"fmt"
func main(){
isSpace := func(ch byte)bool{switch(ch){case' '://errorcase'\t':returntrue}returnfalse}
fmt.Println(isSpace('\t'))//prints true (ok)
fmt.Println(isSpace(' '))//prints false (not ok)}
你可以通过在每个“case”块的结尾使用“fallthrough”,来强制“case”代码块进入。你也可以重写switch语句,来使用“case”块中的表达式列表。
package main
import"fmt"
func main(){
isSpace := func(ch byte)bool{switch(ch){case' ','\t':returntrue}returnfalse}
fmt.Println(isSpace('\t'))//prints true (ok)
fmt.Println(isSpace(' '))//prints true (ok)}
自增和自减
- level: beginner
许多语言都有自增和自减操作。不像其他语言,Go不支持前置版本的操作。你也无法在表达式中使用这两个操作符。
Fails:
package main
import"fmt"
func main(){
data :=[]int{1,2,3}
i :=0++i //error
fmt.Println(data[i++])//error}
Compile Errors:
/tmp/sandbox101231828/main.go:8: syntax error: unexpected ++/tmp/sandbox101231828/main.go:9: syntax error: unexpected ++, expecting :
Works:
package main
import"fmt"
func main(){
data :=[]int{1,2,3}
i :=0
i++
fmt.Println(data[i])}
按位NOT操作
- level: beginner
许多语言使用 ~
作为一元的NOT操作符(即按位补足),但Go为了这个重用了XOR操作符( ^
)。
Fails:
package main
import"fmt"
func main(){
fmt.Println(~2)//error}
Compile Error:
/tmp/sandbox965529189/main.go:6: the bitwise complement operatoris^
Works:
package main
import"fmt"
func main(){var d uint8 =2
fmt.Printf("%08b\n",^d)}
Go依旧使用 ^
作为XOR的操作符,这可能会让一些人迷惑。
如果你愿意,你可以使用一个二元的XOR操作(如, 0x02 XOR 0xff)来表示一个一元的NOT操作(如,NOT 0x02)。这可以解释为什么 ^
被重用来表示一元的NOT操作。
Go也有特殊的‘AND NOT’按位操作( &^
),这也让NOT操作更加的让人迷惑。这看起来需要特殊的特性/hack来支持 A AND (NOT B)
,而无需括号。
package main
import"fmt"
func main(){var a uint8 =0x82var b uint8 =0x02
fmt.Printf("%08b [A]\n",a)
fmt.Printf("%08b [B]\n",b)
fmt.Printf("%08b (NOT B)\n",^b)
fmt.Printf("%08b ^ %08b = %08b [B XOR 0xff]\n",b,0xff,b ^0xff)
fmt.Printf("%08b ^ %08b = %08b [A XOR B]\n",a,b,a ^ b)
fmt.Printf("%08b & %08b = %08b [A AND B]\n",a,b,a & b)
fmt.Printf("%08b &^%08b = %08b [A 'AND NOT' B]\n",a,b,a &^ b)
fmt.Printf("%08b&(^%08b)= %08b [A AND (NOT B)]\n",a,b,a &(^b))}
操作优先级的差异
- level: beginner
除了”bit clear“操作( &^
),Go也一个与许多其他语言共享的标准操作符的集合。尽管操作优先级并不总是一样。
package main
import"fmt"
func main(){
fmt.Printf("0x2 & 0x2 + 0x4 -> %#x\n",0x2&0x2+0x4)//prints: 0x2 & 0x2 + 0x4 -> 0x6//Go: (0x2 & 0x2) + 0x4//C++: 0x2 & (0x2 + 0x4) -> 0x2
fmt.Printf("0x2 + 0x2 << 0x1 -> %#x\n",0x2+0x2<<0x1)//prints: 0x2 + 0x2 << 0x1 -> 0x6//Go: 0x2 + (0x2 << 0x1)//C++: (0x2 + 0x2) << 0x1 -> 0x8
fmt.Printf("0xf | 0x2 ^ 0x2 -> %#x\n",0xf|0x2^0x2)//prints: 0xf | 0x2 ^ 0x2 -> 0xd//Go: (0xf | 0x2) ^ 0x2//C++: 0xf | (0x2 ^ 0x2) -> 0xf}
未导出的结构体不会被编码
- level: beginner
以小写字母开头的结构体将不会被(json、xml、gob等)编码,因此当你编码这些未导出的结构体时,你将会得到零值。
Fails:
package main
import("fmt""encoding/json")
type MyDatastruct{Oneint
two string}
func main(){in:=MyData{1,"two"}
fmt.Printf("%#v\n",in)//prints main.MyData{One:1, two:"two"}
encoded,_ := json.Marshal(in)
fmt.Println(string(encoded))//prints {"One":1}varoutMyData
json.Unmarshal(encoded,&out)
fmt.Printf("%#v\n",out)//prints main.MyData{One:1, two:""}}
有活动的Goroutines下的应用退出
- level: beginner
应用将不会得带所有的goroutines完成。这对于初学者而言是个很常见的错误。每个人都是以某个程度开始,因此如果犯了初学者的错误也没神马好丢脸的 :-)
package main
import("fmt""time")
func main(){
workerCount :=2for i :=0; i < workerCount; i++{
go doit(i)}
time.Sleep(1* time.Second)
fmt.Println("all done!")}
func doit(workerId int){
fmt.Printf("[%v] is running\n",workerId)
time.Sleep(3* time.Second)
fmt.Printf("[%v] is done\n",workerId)}
你将会看到:
[0]is running
[1]is running
all done!
一个最常见的解决方法是使用“WaitGroup”变量。它将会让主goroutine等待所有的worker goroutine完成。如果你的应用有长时运行的消息处理循环的worker,你也将需要一个方法向这些goroutine发送信号,让它们退出。你可以给各个worker发送一个“kill”消息。另一个选项是关闭一个所有worker都接收的channel。这是一次向所有goroutine发送信号的简单方式。
package main
import("fmt""sync")
func main(){var wg sync.WaitGroupdone:= make(chan struct{})
workerCount :=2for i :=0; i < workerCount; i++{
wg.Add(1)
go doit(i,done,wg)}
close(done)
wg.Wait()
fmt.Println("all done!")}
func doit(workerId int,done<-chan struct{},wg sync.WaitGroup){
fmt.Printf("[%v] is running\n",workerId)
defer wg.Done()<-done
fmt.Printf("[%v] is done\n",workerId)}
如果你运行这个应用,你将会看到:
[0]is running
[0]isdone[1]is running
[1]isdone
看起来所有的worker在主goroutine退出前都完成了。棒!然而,你也将会看到这个:
fatal error: all goroutines are asleep - deadlock!
这可不太好 :-) 发送了神马?为什么会出现死锁?worker退出了,它们也执行了 wg.Done()
。应用应该没问题啊。
死锁发生是因为各个worker都得到了原始的“WaitGroup”变量的一个拷贝。当worker执行 wg.Done()
时,并没有在主goroutine上的“WaitGroup”变量上生效。
package main
import("fmt""sync")
func main(){var wg sync.WaitGroupdone:= make(chan struct{})
wq := make(chan interface{})
workerCount :=2for i :=0; i < workerCount; i++{
wg.Add(1)
go doit(i,wq,done,&wg)}for i :=0; i < workerCount; i++{
wq <- i
}
close(done)
wg.Wait()
fmt.Println("all done!")}
func doit(workerId int, wq <-chan interface{},done<-chan struct{},wg *sync.WaitGroup){
fmt.Printf("[%v] is running\n",workerId)
defer wg.Done()for{select{case m :=<- wq:
fmt.Printf("[%v] m => %v\n",workerId,m)case<-done:
fmt.Printf("[%v] is done\n",workerId)return}}}
现在它会如预期般工作 :-)
向无缓存的Channel发送消息,只要目标接收者准备好就会立即返回
- level: beginner
发送者将不会被阻塞,除非消息正在被接收者处理。根据你运行代码的机器的不同,接收者的goroutine可能会或者不会有足够的时间,在发送者继续执行前处理消息。
package main
import"fmt"
func main(){
ch := make(chan string)
go func(){for m := range ch {
fmt.Println("processed:",m)}}()
ch <-"cmd.1"
ch <-"cmd.2"//won't be processed}
向已关闭的Channel发送会引起Panic
- level: beginner
从一个关闭的channel接收是安全的。在接收状态下的 ok
的返回值将被设置为 false
,这意味着没有数据被接收。如果你从一个有缓存的channel接收,你将会首先得到缓存的数据,一旦它为空,返回的 ok
值将变为 false
。
向关闭的channel中发送数据会引起panic。这个行为有文档说明,但对于新的Go开发者的直觉不同,他们可能希望发送行为与接收行为很像。
package main
import("fmt""time")
func main(){
ch := make(chan int)for i :=0; i <3; i++{
go func(idx int){
ch <-(idx +1)*2}(i)}//get the first result
fmt.Println(<-ch)
close(ch)//not ok (you still have other senders)//do other work
time.Sleep(2* time.Second)}
根据不同的应用,修复方法也将不同。可能是很小的代码修改,也可能需要修改应用的设计。无论是哪种方法,你都需要确保你的应用不会向关闭的channel中发送数据。
上面那个有bug的例子可以通过使用一个特殊的废弃的channel来向剩余的worker发送不再需要它们的结果的信号来修复。
package main
import("fmt""time")
func main(){
ch := make(chan int)done:= make(chan struct{})for i :=0; i <3; i++{
go func(idx int){select{case ch <-(idx +1)*2: fmt.Println(idx,"sent result")case<-done: fmt.Println(idx,"exiting")}}(i)}//get first result
fmt.Println("result:",<-ch)
close(done)//do other work
time.Sleep(3* time.Second)}
使用"nil" Channels
- level: beginner
在一个 nil
的channel上发送和接收操作会被永久阻塞。这个行为有详细的文档解释,但它对于新的Go开发者而言是个惊喜。
package main
import("fmt""time")
func main(){var ch chan intfor i :=0; i <3; i++{
go func(idx int){
ch <-(idx +1)*2}(i)}//get first result
fmt.Println("result:",<-ch)//do other work
time.Sleep(2* time.Second)}
如果运行代码你将会看到一个runtime错误:
fatal error: all goroutines are asleep - deadlock!
这个行为可以在 select
声明中用于动态开启和关闭 case
代码块的方法。
package main
import"fmt"import"time"
func main(){
inch := make(chan int)
outch := make(chan int)
go func(){varin<- chan int= inch
varout chan <-intvar val intfor{select{caseout<- val:out=nilin= inch
case val =<-in:out= outch
in=nil}}}()
go func(){for r := range outch {
fmt.Println("result:",r)}}()
time.Sleep(0)
inch <-1
inch <-2
time.Sleep(3* time.Second)}
传值方法的接收者无法修改原有的值
- level: beginner
方法的接收者就像常规的函数参数。如果声明为值,那么你的函数/方法得到的是接收者参数的拷贝。这意味着对接收者所做的修改将不会影响原有的值,除非接收者是一个map或者slice变量,而你更新了集合中的元素,或者你更新的域的接收者是指针。
package main
import"fmt"
type data struct{
num int
key *string
items map[string]bool}
func (this*data) pmethod(){this.num =7}
func (this data) vmethod(){this.num =8*this.key ="v.key"this.items["vmethod"]=true}
func main(){
key :="key.1"
d := data{1,&key,make(map[string]bool)}
fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)//prints num=1 key=key.1 items=map[]
d.pmethod()
fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)//prints num=7 key=key.1 items=map[]
d.vmethod()
fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)//prints num=7 key=v.key items=map[vmethod:true]}
原文地址: levy.at/blog/11
网友评论