美文网首页
【转】word2vector的前世今生

【转】word2vector的前世今生

作者: dpjdrniu | 来源:发表于2019-12-20 16:06 被阅读0次

[https://www.cnblogs.com/iloveai/p/word2vec.html]

1.清楚介绍了word2vector的来龙去脉  
2.后面很多模型还没细看,也没看懂  

2013年,Google开源了一款用于词向量计算的工具——word2vec,引起了工业界和学术界的关注。首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练;其次,该工具得到的训练结果——词向量(word embedding),可以很好地度量词与词之间的相似性。随着深度学习(Deep Learning)在自然语言处理中应用的普及,很多人误以为word2vec是一种深度学习算法。其实word2vec算法的背后是一个浅层神经网络。另外需要强调的一点是,word2vec是一个计算word vector的开源工具。当我们在说word2vec算法或模型的时候,其实指的是其背后用于计算word vector的CBoW模型和Skip-gram模型。很多人以为word2vec指的是一个算法或模型,这也是一种谬误。接下来,本文将从统计语言模型出发,尽可能详细地介绍word2vec工具背后的算法模型的来龙去脉。

Word Embedding

最后,我想简单阐述下我对word embedding的几点思考。不一定正确,也欢迎大家提出不同的意见。

Word embedding最早出现于Bengio在03年发表的开创性文章中[3]。通过嵌入一个线性的投影矩阵(projection matrix),将原始的one-hot向量映射为一个稠密的连续向量,并通过一个语言模型的任务去学习这个向量的权重。这一思想后来被广泛应用于包括word2vec在内的各种NLP模型中。

Word embedding的训练方法大致可以分为两类:一类是无监督或弱监督的预训练;一类是端对端(end to end)的有监督训练。

无监督或弱监督的预训练以word2vec和auto-encoder为代表。这一类模型的特点是,不需要大量的人工标记样本就可以得到质量还不错的embedding向量。不过因为缺少了任务导向,可能和我们要解决的问题还有一定的距离。因此,我们往往会在得到预训练的embedding向量后,用少量人工标注的样本去fine-tune整个模型。

相比之下,端对端的有监督模型在最近几年里越来越受到人们的关注。与无监督模型相比,端对端的模型在结构上往往更加复杂。同时,也因为有着明确的任务导向,端对端模型学习到的embedding向量也往往更加准确。例如,通过一个embedding层和若干个卷积层连接而成的深度神经网络以实现对句子的情感分类,可以学习到语义更丰富的词向量表达。

Word embedding的另一个研究方向是在更高层次上对sentence的embedding向量进行建模。

我们知道,word是sentence的基本组成单位。一个最简单也是最直接得到sentence embedding的方法是将组成sentence的所有word的embedding向量全部加起来——类似于CBoW模型。

显然,这种简单粗暴的方法会丢失很多信息。

另一种方法借鉴了word2vec的思想——将sentence或是paragraph视为一个特殊的word,然后用CBoW模型或是Skip-gram进行训练[12]。这种方法的问题在于,对于一篇新文章,总是需要重新训练一个新的sentence2vec。此外,同word2vec一样,这个模型缺少有监督的训练导向。

个人感觉比较靠谱的是第三种方法——基于word embedding的端对端的训练。Sentence本质上是word的序列。因此,在word embedding的基础上,我们可以连接多个RNN模型或是卷积神经网络,对word embedding序列进行编码,从而得到sentence embedding。

这方面的工作已有很多。有机会,我会再写一篇关于sentence embedding的综述。

References

[1]: Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013, January 17). Efficient Estimation of Word Representations in Vector Space. arXiv.org.

[2]: Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013, October 17). Distributed Representations of Words and Phrases and their Compositionality. arXiv.org.

[3]: Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic language model. The Journal of Machine Learning Research, 3, 1137–1155.

[4]: Turney, P. D., & Pantel, P. (2010). From frequency to meaning: vector space models of semantics. Journal of Artificial Intelligence Research, 37(1).

[5]: Morin, F., & Bengio, Y. (2005). Hierarchical Probabilistic Neural Network Language Model. Aistats.

[6]: Mnih, A., & Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-contrastive estimation, 2265–2273.

[7]: Mikolov, T., Karafiát, M., Burget, L., & Cernocký, J. (2010). Recurrent neural network based language model. Interspeech.

[8]: Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic Regularities in Continuous Space Word Representations. Hlt-Naacl.

[9]: Mikolov, T., Le, Q. V., & Sutskever, I. (2013, September 17). Exploiting Similarities among Languages for Machine Translation. arXiv.org.

[10]: Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research, 12(Aug), 2493–2537.

[11]: Barkan, O., & Koenigstein, N. (2016, March 14). Item2Vec: Neural Item Embedding for Collaborative Filtering. arXiv.org.

[12]: Le, Q. V., & Mikolov, T. (2014, May 16). Distributed Representations of Sentences and Documents. arXiv.org.

相关文章

  • 【转】word2vector的前世今生

    [https://www.cnblogs.com/iloveai/p/word2vec.html] 2013年,G...

  • (转)爱的前世今生

    她是一个在佛前守候的精灵。有一天在看明镜里的尘世的时候,她看见了一个男子,一身深蓝色的长衣,在街市上平静的站着,孤...

  • 转塔

    塔转人生,人生如塔。 前世,今生,来世。 前世有因缘,今生有起源,来世有归途。 风铃清脆,雨落塔前,步入健康人生。...

  • 【转】数据产品的前世今生

    互联网是个制造流行概念的行业,“数据产品”也不幸免。其实,数据产品的“实”早就存在,只是“名”是后面几年慢慢流行起...

  • 将军在上之男昭女惜重生三世千年孽缘

    前世!今生!来世再续! 前世欠谁!今生还!来世再续前缘! 前世因!今生续!来世果!

  • 人死,并非如灯灭……

    “今生,是前世的“来生”,是来生的“前世”。在今生中,我们能见到自己的前世与来生。回溯前世,是为了改善今生;回到今...

  • 遇见爱情:当鞋合脚时

    前世,我一步一拜一莲华,只愿来生与你行天涯。 今生,我转山转水转佛塔,只求三月春风遇桃花。 前生所愿,今生所行。确...

  • 前世今生来世缘

    谈何前世情 今生还 今生情 来世还 前世孽债 前世还 未了 今生还 今生欠 今生还 谈何来世还 来世欠 来世还 能...

  • iOS Device ID 的前世今生

    iOS Device ID 的前世今生 iOS Device ID 的前世今生

  • 何世许今生

    前世的怨,今生的恨;前世的悲,今生的苦;前世的善,今世的乐。

网友评论

      本文标题:【转】word2vector的前世今生

      本文链接:https://www.haomeiwen.com/subject/rodinctx.html