美文网首页
pytorch -> onnx 报错:RuntimeError:

pytorch -> onnx 报错:RuntimeError:

作者: 谢小帅 | 来源:发表于2019-05-09 21:55 被阅读0次

    参考:https://github.com/pytorch/pytorch/issues/8392
    原因:在用 pytorch pretrained resnet 模型时,下面红框中的赋值部分,其实是引用 resnet,而不是显示的 layer 定义

    解决办法

    在定义模型时,指定每一层 layer 的显示定义,得到模型之后,再把 pretrained resnet 的参数赋给定义好的模型的每一层。

    以重载 resnet18 为例

    • 原始模型定义,__init__ 中并没有显示指定每个 layer
    import torch.nn as nn
    from torchvision import models
    
    
    class resnet18(nn.Module):
        def __init__(self, pretrained=True):
            super().__init__()
            self.features = models.resnet18(pretrained=pretrained)
            self.conv1 = self.features.conv1
            # self.conv1 = nn.Conv2d(4, 64, kernel_size=7, stride=2, padding=3, bias=False)  # 4 channels
            self.bn1 = self.features.bn1
            self.relu = self.features.relu
            self.maxpool1 = self.features.maxpool
            self.layer1 = self.features.layer1
            self.layer2 = self.features.layer2
            self.layer3 = self.features.layer3
            self.layer4 = self.features.layer4
            # GAP
            self.gap = nn.AdaptiveAvgPool2d(output_size=(1, 1))
    
        def forward(self, input):
            x = self.conv1(input)
            x = self.relu(self.bn1(x))
            x = self.maxpool1(x)
            feature1 = self.layer1(x)  # 1 / 4
            feature2 = self.layer2(feature1)  # 1 / 8
            feature3 = self.layer3(feature2)  # 1 / 16
            feature4 = self.layer4(feature3)  # 1 / 32
            tail = self.gap(feature4)
            return feature3, feature4, tail
    
    • 修改后,先 copy 默认的 ResNet,然后在函数 resnet18 中进行参数赋值
    class ResNet(nn.Module):
    
        def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
            super(ResNet, self).__init__()
            self.inplanes = 64
            self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                                   bias=False)
            self.bn1 = nn.BatchNorm2d(64)
            self.relu = nn.ReLU(inplace=True)
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            self.layer1 = self._make_layer(block, 64, layers[0])
            self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
            # GAP
            self.gap = nn.AdaptiveAvgPool2d(output_size=(1, 1))
    
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
    
            # Zero-initialize the last BN in each residual branch,
            # so that the residual branch starts with zeros, and each residual block behaves like an identity.
            # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
            if zero_init_residual:
                for m in self.modules():
                    if isinstance(m, Bottleneck):
                        nn.init.constant_(m.bn3.weight, 0)
                    elif isinstance(m, BasicBlock):
                        nn.init.constant_(m.bn2.weight, 0)
    
        def _make_layer(self, block, planes, blocks, stride=1):
            downsample = None
            if stride != 1 or self.inplanes != planes * block.expansion:
                downsample = nn.Sequential(
                    conv1x1(self.inplanes, planes * block.expansion, stride),
                    nn.BatchNorm2d(planes * block.expansion),
                )
    
            layers = []
            layers.append(block(self.inplanes, planes, stride, downsample))
            self.inplanes = planes * block.expansion
            for _ in range(1, blocks):
                layers.append(block(self.inplanes, planes))
    
            return nn.Sequential(*layers)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            x = self.maxpool(x)
    
            feature1 = self.layer1(x)  # 1 / 4
            feature2 = self.layer2(feature1)  # 1 / 8
            feature3 = self.layer3(feature2)  # 1 / 16
            feature4 = self.layer4(feature3)  # 1 / 32
            tail = self.gap(feature4)
            return feature3, feature4, tail
    
    
    def resnet18(pretrained=False, **kwargs):
        """Constructs a ResNet-18 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
        if pretrained: # 在这里 copy pretrained resnet 参数
            features = models.resnet18(pretrained=pretrained)
            model.conv1 = features.conv1
            model.bn1 = features.bn1
            model.relu = features.relu
            model.maxpool = features.maxpool
            model.layer1 = features.layer1
            model.layer2 = features.layer2
            model.layer3 = features.layer3
            model.layer4 = features.layer4
        return model
    

    相关文章

      网友评论

          本文标题:pytorch -> onnx 报错:RuntimeError:

          本文链接:https://www.haomeiwen.com/subject/rongoqtx.html