美文网首页
数据结构与算法 树与二叉树

数据结构与算法 树与二叉树

作者: 今年27 | 来源:发表于2020-05-02 08:29 被阅读0次

    树的定义

    树(tree)是n(n>=0)个结点的有限集合。当n=0时,该集合满足以下条件:

    (1)有且只有一个特殊的结点称为树的根(root),根结点没有直接前驱结点,但有零个或多个直接后继结点。

    (2)跟结点之外的其余n-1个结点被分成m(m>0)个互相不相交的集合T1、T2、···、Tm,其中每一个集合Ti(1<=i<=m)本身又是一棵树。树T1,T2,···,Tm称为根节点的子树。

    树的定义
    树的相关概念

    (1)结点:包含一个数据元素及若干指向其他结点的分支信息的数据结构。

    (2)结点的度:结点所拥有的子树的个数称为该结点的度。

    (3)叶子结点:度为0的结点称为叶子结点,或者称为终端结点。

    (4)分支结点:度不为0的结点称为分支结点,或者称为非终端结点。一棵树的结点除叶子结点外,其余的结点都是分支结点。

    (5)孩子结点、双亲结点、兄弟结点:树中一个结点的子树的根结点称为这个结点的孩子结点,这个结点称为孩子结点的双亲结点。具有同一个双亲结点的孩子结点互称为兄弟结点。

    (6)路径、路径长度:设n1,n2,···,nk为一棵树的结点序列,若结点ni是ni+i的双亲结点(1<=i <k),则把n1,n2,···,nk称为一条由n1至nk的路径。这条路径的长度是k-1。

    (7)祖先、子孙:在树中,如果有一条路径从结点M到结点N,那么M就称为N的祖先,而N称为M的子孙。

    (8)结点的层次:规定树的根结点的层数为1,其余结点的层数等于它的双亲结点层数加1。

    (9)树的深度(高度):树中所有结点的层次的最大树称为树的深度。

    (10)树的度:树中所有结点度的最大值称为该树的度。

    (11)有序树和无序树:如果一棵树中结点的各子树从左到右是有次序的,即若交互了某结点各子树的相应位置,则构成不同的树,称这棵树为有序树;反之,则称为无序树。

    (12)森林:m(m>=0)棵不想交的树的集合称为森林。自然界中树和森林是不同的概念,但在数据结构中,树和森林只有很小的差别。任何一棵树,删去根结点就变成了森林;反之,给森林增加一个统一的根结点,森林就变成一棵树。


    树的概念

    二叉树

    二叉树是一种简单又非常重要的树形结构。由于任何数都可以转换为二叉树进行处理,而二叉树又有许多好的性质,非常适合于计算机处理,因此二叉树也是数据结构研究的重点。

    基本概念

    二叉树(Binary Tree)是有n个结点的有限集合,该集合或者为空、或者由一个称为根(Root)的结点及两个不相交、被分别称为根结点的左子树和右子树的二叉树组成。当集合为空时,称该二叉树为空二叉树。一颗二叉树中每个结点只能含有0、1或2个孩子结点,而且孩子节点分左、右孩子。


    二叉树

    满二叉树:在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上,这样的一棵二叉树称为满二叉树。


    满二叉树

    完全二叉树:一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(i<=n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。其特点是:叶子结点只能出现在最下层和次下层,且最下层的叶子结点在树的左部。显然,一棵满二叉树必定是一棵完全二叉树,而完全二叉树未必是满二叉树。

    完全二叉树

    二叉树的遍历:

    一棵二叉树由根结点、左子树和右子树三部分组成,若规定 D、L、R 分别代表遍历根结点、遍历左子树、遍历右子树,则二叉树的遍历方式有 6 种:DLR、DRL、LDR、LRD、RDL、RLD。由于先遍历左子树和先遍历右子树在算法设计上没有本质区别,所以,只讨论三种方式:

    前序遍历:DLR--前序遍历(根在前,从左往右,一棵树的根永远在左子树前面,左子树又永远在右子树前面 )


    先序遍历

    中序遍历:LDR--中序遍历(根在中,从左往右,一棵树的左子树永远在根前面,根永远在右子树前面)


    中序遍历

    后序遍历:LRD--后序遍历(根在后,从左往右,一棵树的左子树永远在右子树前面,右子树永远在根前面)


    后序遍历

    层序遍历:按层,从上到下,从左到右遍历,这个没啥好说的。


    层序遍历

    以顺序存储结构上代码:

    #include "stdio.h"
    #include "stdlib.h"
    
    #include "math.h"
    #include "time.h"
    
    #define OK 1
    #define ERROR 0
    #define TRUE 1
    #define FALSE 0
    
    #define MAXSIZE 100 /* 存储空间初始分配量 */
    #define MAX_TREE_SIZE 100 /* 二叉树的最大结点数 */
    
    typedef int Status;        /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
    typedef int CElemType;      /* 树结点的数据类型,目前暂定为整型 */
    typedef CElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点  */
    CElemType Nil = 0;   /*设整型以0为空 或者以 INT_MAX(65535)*/
    
    typedef struct {
        int level; //结点层
        int order; //本层的序号(按照满二叉树给定序号规则)
    }Position;
    
    #pragma mark -- 二叉树的基本操作
    //6.1 visit
    Status visit(CElemType c){
        printf("%d ",c);
        return OK;
    }
    
    //6.2 构造空二叉树T,因为T是固定数组,不会改变.
    Status InitBiTree(SqBiTree T){
        
        for (int i = 0; i < MAX_TREE_SIZE; i++) {
            //将二叉树初始化值置空
            T[i] = Nil;
        }
        
        return OK;
    }
    
    //6.3 按层序次序输入二叉树中的结点值(字符型或整型),构造顺序存储的二叉树T
    Status CreateBiTree(SqBiTree T){
        int i = 0;
        
        //printf("按层序输入结点的值(整型),0表示空结点, 输入999结束.结点数<=%d\n",MAX_TREE_SIZE);
        /*
         1      -->1
         2     3   -->2
         4  5  6   7 -->3
         8  9 10       -->4
         
         1 2 3 4 5 6 7 8 9 10 Nil Nil Nil
         */
        
        while (i < 10) {
            T[i] = i+1;
            printf("%d ",T[i]);
            
            //结点不为空,且无双亲结点
            if (i != 0 && T[(i+1)/2-1] == Nil && T[i] != Nil) {
                printf("出现无双亲的非根结点%d\n",T[i]);
                exit(ERROR);
            }
            
            i++;
            
        }
        
        //将空赋值给T的后面的结点
        while (i < MAX_TREE_SIZE) {
            T[i] = Nil;
            i++;
        }
        
        return OK;
    }
    
    //技巧:
    //如果大家想要2个函数的结果一样,但是目的不同;
    //在顺序存储结构中, 两个函数完全一样的结果
    #define ClearBiTree InitBiTree
    
    /*6.4 判断二叉树是否为空
     初始条件: 二叉树已存在
     操作结果: 若T为空二叉树,则返回TRUE,否则返回FALSE;
     */
    Status BiTreeEmpty(SqBiTree T){
        //根结点为空,则二叉树为空
        if (T[0] == Nil)
            return TRUE;
        
        return FALSE;
    }
    
    /*6.5 获取二叉树的深度
     初始条件: 二叉树已存在
     操作结果: 返回二叉树T深度;
     */
    int BiTreeDepth(SqBiTree T){
        
        int j = -1;
        int i;
        
        //找到最后一个结点
        //MAX_TREE_SIZE -> 100 -> 10 目的找到最后一个结点10的位置
        for (i = MAX_TREE_SIZE-1 ; i>=0; i--) {
            if (T[i] != Nil)
                break;
        }
        
        do {
            j++;
        } while ( powl(2, j) <= i); //计算2的次幂
        
        return j;
    }
    
    /*6.6 返回处于位置e(层,本层序号)的结点值
     初始条件: 二叉树T存在,e是T中某个结点(的位置)
     操作结构: 返回处于位置e(层,本层序号)的结点值
     */
    CElemType Value(SqBiTree T,Position e){
        
        /*
         Position.level -> 结点层.表示第几层;
         Position.order -> 本层的序号(按照满二叉树给定序号规则)
         */
        
        //pow(2,e.level-1) 找到层序
        printf("%d\n",(int)pow(2,e.level-1));
        
        //e.order
        printf("%d\n",e.order);
        
        //4+2-2;
        return T[(int)pow(2, e.level-1)+e.order-2];
        
    }
    
    
    /*6.7 获取二叉树跟结点的值
     初始条件: 二叉树T存在
     操作结果: 当T不空,用e返回T的根, 返回OK; 否则返回ERROR
     */
    Status Root(SqBiTree T,CElemType *e){
        if (BiTreeEmpty(T)) {
            return ERROR;
        }
        
        *e = T[0];
        return OK;
    }
    
    /*
     6.8 给处于位置e的结点赋值
     初始条件: 二叉树存在,e是T中某个结点的位置
     操作结果: 给处于位置e的结点赋值Value;
     */
    Status Assign(SqBiTree T,Position e,CElemType value){
        
        //找到当前e在数组中的具体位置索引
        int i = (int)powl(2, e.level-1)+e.order -2;
        
        //叶子结点的双亲为空
        if (value != Nil &&  T[(i+1)/2-1] == Nil) {
            return ERROR;
        }
        
        //给双亲赋空值但是有叶子结点
        if (value == Nil && (T[i*2+1] != Nil || T[i*2+2] != Nil)) {
            return  ERROR;
        }
        
        T[i] = value;
        return OK;
    }
    
    /*
     6.9 获取e的双亲;
     初始条件: 二叉树存在,e是T中的某一个结点
     操作结果: 若e是T的非根结点, 则返回它的双亲,否则返回"空"
     */
    CElemType Parent(SqBiTree T, CElemType e){
        
        //空树
        if (T[0] == Nil) {
            return Nil;
        }
        
        for (int i = 1 ; i < MAX_TREE_SIZE; i++) {
            //找到e
            if (T[i] == e) {
                return T[(i+1)/2 - 1];
            }
        }
        
        //没有找到
        return Nil;
        
    }
    
    /*
     6.10 获取某个结点的左孩子;
     初始条件:二叉树T存在,e是某个结点
     操作结果:返回e的左孩子,若e无左孩子,则返回"空"
     */
    CElemType LeftChild(SqBiTree T,CElemType e){
        
        //空树
        if (T[0] == Nil) {
            return Nil;
        }
        for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
            //找到e
            if (T[i] == e) {
                return T[i*2+1];
            }
        }
        
        //没有找到
        return Nil;
        
    }
    
    /*
     6.11 获取某个结点的右孩子;
     初始条件:二叉树T存在,e是某个结点
     操作结果:返回e的左孩子,若e无左孩子,则返回"空"
     */
    CElemType RightChild(SqBiTree T,CElemType e){
        
        //空树
        if (T[0] == Nil) {
            return Nil;
        }
        for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
            //找到e
            if (T[i] == e) {
                return T[i*2+2];
            }
        }
        
        //没有找到
        return Nil;
        
    }
    
    /*
     6.12 获取结点的左兄弟
     初始条件:  二叉树T存在,e是T中某个结点
     操作结果: 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空"
     */
    CElemType LeftSibling(SqBiTree T,CElemType e)
    {
        /* 空树 */
        if(T[0]==Nil)
            return Nil;
        
        for(int i=1;i<=MAX_TREE_SIZE-1;i++)
        /* 找到e且其序号为偶数(是右孩子) */
            if(T[i]==e&&i%2==0)
                return T[i-1];
        
        return Nil; /* 没找到e */
    }
    
    /* 6.13 获取结点的右兄弟
     初始条件: 二叉树T存在,e是T中某个结点
     操作结果: 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
     */
    CElemType RightSibling(SqBiTree T,CElemType e)
    {
        /* 空树 */
        if(T[0]==Nil)
            return Nil;
        
        for(int i=1;i<=MAX_TREE_SIZE-1;i++)
        /* 找到e且其序号为奇数(是左孩子) */
            if(T[i]==e&&i%2==1)
                return T[i+1];
        
        return Nil; /* 没找到e */
    }
    
    #pragma mark -- 二叉树的遍历
    
    /*
     6.14 层序遍历二叉树
     */
    void LevelOrderTraverse(SqBiTree T){
        
        int i = MAX_TREE_SIZE-1;
        
        //找到最后一个非空结点的序号
        while (T[i] == Nil) i--;
        
        //从根结点起,按层序遍历二叉树
        for (int j = 0; j <= i; j++)
            //只遍历非空结点
            if (T[j] != Nil)
                visit(T[j]);
        
        printf("\n");
    }
    
    /*
     6.15 前序遍历二叉树
     */
    void PreTraverse(SqBiTree T,int e){
        
        //打印结点数据
        visit(T[e]);
        
        //先序遍历左子树
        if (T[2 * e + 1] != Nil) {
            PreTraverse(T, 2*e+1);
        }
        //最后先序遍历右子树
        if (T[2 * e + 2] != Nil) {
            PreTraverse(T, 2*e+2);
        }
    }
    
    Status PreOrderTraverse(SqBiTree T){
        
        //树不为空
        if (!BiTreeEmpty(T)) {
            PreTraverse(T, 0);
        }
        printf("\n");
        return  OK;
    }
    
    /*
     6.16 中序遍历
     */
    void InTraverse(SqBiTree T, int e){
        
        /* 左子树不空 */
        if (T[2*e+1] != Nil)
            InTraverse(T, 2*e+1);
        
        visit(T[e]);
        
        /* 右子树不空 */
        if (T[2*e+2] != Nil)
            InTraverse(T, 2*e+2);
    }
    
    Status InOrderTraverse(SqBiTree T){
        
        /* 树不空 */
        if (!BiTreeEmpty(T)) {
            InTraverse(T, 0);
        }
        printf("\n");
        return OK;
    }
    
    /*
     6.17 后序遍历
     */
    void PostTraverse(SqBiTree T,int e)
    {   /* 左子树不空 */
        if(T[2*e+1]!=Nil)
            PostTraverse(T,2*e+1);
        /* 右子树不空 */
        if(T[2*e+2]!=Nil)
            PostTraverse(T,2*e+2);
        
        visit(T[e]);
    }
    Status PostOrderTraverse(SqBiTree T)
    {
        if(!BiTreeEmpty(T)) /* 树不空 */
            PostTraverse(T,0);
        printf("\n");
        return OK;
    }
    
    int main(int argc, const char * argv[]) {
        // insert code here...
        printf("二叉树顺序存储结构实现!\n");
        
        Status iStatus;
        Position p;
        CElemType e;
        SqBiTree T;
        
        InitBiTree(T);
        CreateBiTree(T);
        printf("建立二叉树后,树空否?%d(1:是 0:否) \n",BiTreeEmpty(T));
        printf("树的深度=%d\n",BiTreeDepth(T));
        
        p.level=3;
        p.order=2;
        e=Value(T,p);
        printf("第%d层第%d个结点的值: %d\n",p.level,p.order,e);
        
        
        iStatus = Root(T, &e);
        if (iStatus) {
            printf("二叉树的根为:%d\n",e);
        }else
        {
            printf("树为空,无根!\n");
        }
        
        //向树中3层第2个结点位置上结点赋值99
        e = 99;
        Assign(T, p, e);
        
        //获取树中3层第2个结点位置结点的值是多少:
        e=Value(T,p);
        printf("第%d层第%d个结点的值: %d\n",p.level,p.order,e);
        
        //找到e这个结点的双亲;
        printf("结点%d的双亲为%d_",e,Parent(T, e));
        //找到e这个结点的左右孩子;
        printf("左右孩子分别为:%d,%d\n",LeftChild(T, e),RightChild(T, e));
        //找到e这个结点的左右兄弟;
        printf("结点%d的左右兄弟:%d,%d\n",e,LeftSibling(T, e),RightSibling(T, e));
        
        
        Assign(T, p, 5);
        
        printf("二叉树T层序遍历:");
        LevelOrderTraverse(T);
        
        printf("二叉树T先序遍历:");
        PreOrderTraverse(T);
        
        printf("二叉树T中序遍历:");
        InOrderTraverse(T);
        
        printf("二叉树T后序遍历:");
        PostOrderTraverse(T);
        
        return 0;
    }
    
    

    以链表的形式上代码:

    #include "string.h"
    #include "stdio.h"
    #include "stdlib.h"
    
    #include "math.h"
    #include "time.h"
    
    #define OK 1
    #define ERROR 0
    #define TRUE 1
    #define FALSE 0
    
    /* 存储空间初始分配量 */
    #define MAXSIZE 100
    /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
    typedef int Status;
    
    #pragma mark--二叉树构造
    int indexs = 1;
    typedef char String[24]; /*  0号单元存放串的长度 */
    String str;
    Status StrAssign(String T,char *chars)
    {
        int i;
        if(strlen(chars)>MAXSIZE)
            return ERROR;
        else
        {
            T[0]=strlen(chars);
            for(i=1;i<=T[0];i++)
                T[i]=*(chars+i-1);
            return OK;
        }
    }
    
    #pragma mark--二叉树基本操作
    
    typedef char CElemType;
    CElemType Nil=' '; /* 字符型以空格符为空 */
    typedef struct BiTNode  /* 结点结构 */
    {
        CElemType data;        /* 结点数据 */
        struct BiTNode *lchild,*rchild; /* 左右孩子指针 */
    }BiTNode,*BiTree;
    
    /*7.1 打印数据*/
    Status visit(CElemType e)
    {
        printf("%c ",e);
        return OK;
    }
    
    /* 7.2 构造空二叉树T */
    Status InitBiTree(BiTree *T)
    {
        *T=NULL;
        return OK;
    }
    
    /* 7.3 销毁二叉树
     初始条件: 二叉树T存在。
     操作结果: 销毁二叉树T
     */
    void DestroyBiTree(BiTree *T)
    {
        if(*T)
        {
            /* 有左孩子 */
            if((*T)->lchild)
                DestroyBiTree(&(*T)->lchild); /* 销毁左孩子子树 */
            
            /* 有右孩子 */
            if((*T)->rchild)
                DestroyBiTree(&(*T)->rchild); /* 销毁右孩子子树 */
            
            free(*T); /* 释放根结点 */
            
            *T=NULL; /* 空指针赋0 */
        }
    }
    #define ClearBiTree DestroyBiTree
    
    /*7.4 创建二叉树
     按前序输入二叉树中的结点值(字符),#表示空树;
     */
    void CreateBiTree(BiTree *T){
        
        CElemType ch;
        
        //获取字符
        ch = str[indexs++];
        
        //判断当前字符是否为'#'
        if (ch == '#') {
            *T = NULL;
        }else
        {
            //创建新的结点
            *T = (BiTree)malloc(sizeof(BiTNode));
            //是否创建成功
            if (!*T) {
                exit(OVERFLOW);
            }
            
            /* 生成根结点 */
            (*T)->data = ch;
            /* 构造左子树 */
            CreateBiTree(&(*T)->lchild);
            /* 构造右子树 */
            CreateBiTree(&(*T)->rchild);
        }
        
    }
    
    
    /*
     7.5 二叉树T是否为空;
     初始条件: 二叉树T存在
     操作结果: 若T为空二叉树,则返回TRUE,否则FALSE
     */
    Status BiTreeEmpty(BiTree T)
    {
        if(T)
            return FALSE;
        else
            return TRUE;
    }
    
    /*
     7.6 二叉树T的深度
     初始条件: 二叉树T存在
     操作结果: 返回T的深度
     */
    int BiTreeDepth(BiTree T){
        
        int i,j;
        if(!T)
            return 0;
        
        //计算左孩子的深度
        if(T->lchild)
            i=BiTreeDepth(T->lchild);
        else
            i=0;
        
        //计算右孩子的深度
        if(T->rchild)
            j=BiTreeDepth(T->rchild);
        else
            j=0;
        
        //比较i和j
        return i>j?i+1:j+1;
    }
    
    /*
     7.7 二叉树T的根
     初始条件: 二叉树T存在
     操作结果: 返回T的根
     */
    CElemType Root(BiTree T){
        if (BiTreeEmpty(T))
            return Nil;
        
        return T->data;
    }
    
    /*
     7.8 返回p所指向的结点值;
     初始条件: 二叉树T存在,p指向T中某个结点
     操作结果: 返回p所指结点的值
     */
    CElemType Value(BiTree p){
        return p->data;
    }
    
    /*
     7.8 给p所指结点赋值为value;
     初始条件: 二叉树T存在,p指向T中某个结点
     操作结果: 给p所指结点赋值为value
     */
    void Assign(BiTree p,CElemType value)
    {
        p->data=value;
    }
    
    #pragma mark--二叉树遍历
    /*
     7.8  前序递归遍历T
     初始条件:二叉树T存在;
     操作结果: 前序递归遍历T
     */
    
    void PreOrderTraverse(BiTree T)
    {
        if(T==NULL)
            return;
        printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
        PreOrderTraverse(T->lchild); /* 再先序遍历左子树 */
        PreOrderTraverse(T->rchild); /* 最后先序遍历右子树 */
    }
    
    
    /*
     7.9  中序递归遍历T
     初始条件:二叉树T存在;
     操作结果: 中序递归遍历T
     */
    void InOrderTraverse(BiTree T)
    {
        if(T==NULL)
            return ;
        InOrderTraverse(T->lchild); /* 中序遍历左子树 */
        printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
        InOrderTraverse(T->rchild); /* 最后中序遍历右子树 */
    }
    
    /*
     7.10  后序递归遍历T
     初始条件:二叉树T存在;
     操作结果: 中序递归遍历T
     */
    void PostOrderTraverse(BiTree T)
    {
        if(T==NULL)
            return;
        PostOrderTraverse(T->lchild); /* 先后序遍历左子树  */
        PostOrderTraverse(T->rchild); /* 再后序遍历右子树  */
        printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
    }
    
    int main(int argc, const char * argv[]) {
        // insert code here...
        printf("二叉树链式存储结构实现!\n");
        
        int i;
        BiTree T;
        CElemType e1;
        
        InitBiTree(&T);
        
        StrAssign(str,"ABDH#K###E##CFI###G#J##");
        
        CreateBiTree(&T);
        printf("二叉树是否为空%d(1:是 0:否),树的深度=%d\n",BiTreeEmpty(T),BiTreeDepth(T));
        
        e1=Root(T);
        printf("二叉树的根为: %c\n",e1);
        
        printf("\n前序遍历二叉树:");
        PreOrderTraverse(T);
        
        printf("\n中序遍历二叉树:");
        InOrderTraverse(T);
        
        printf("\n后序遍历二叉树:");
        PostOrderTraverse(T);
        
        printf("\n");
        
        return 0;
    }
    
    

    相关文章

      网友评论

          本文标题:数据结构与算法 树与二叉树

          本文链接:https://www.haomeiwen.com/subject/rpdvwhtx.html