a, b, c = 12, 9, 5
cnt = []
for i in range(a + 1):
for j in range(b + 1):
for k in range(c + 1):
if i + j + k == 12:
cnt.append([i, j, k])
cnt.reverse()
print(cnt)
print(len(cnt))
print("6,6,0 index:", cnt.index([6, 6, 0]))
def move(x, y, max, r=0):
tmp = abs(max - y)
x_ = x if x < tmp else tmp
t = [x - x_, y + x_]
if r:
t.reverse()
return t
def check(x, y):
M = 1E100
if x == y:
return 0
tmp = []
tmp.append(move(x[0], x[1], 9) + [x[2]]) # a->b
k = move(x[0], x[2], 5)
k.insert(1, x[1])
tmp.append(k) # a->c
tmp.append(move(x[1], x[0], 12, 1) + [x[2]]) # b->a
tmp.append([x[0]] + move(x[1], x[2], 5)) # b->c
k = move(x[2], x[0], 12, 1)
k.insert(1, x[1])
tmp.append(k) # c->a
tmp.append([x[0]] + move(x[2], x[1], 9, 1)) # c->b
if y in tmp:
return 1
return M
def generate_matrix():
nums = []
for index, i in enumerate(cnt):
tmp_x = []
for j in cnt:
r = check(i, j)
tmp_x.append(r)
nums.append(tmp_x)
print(nums)
return nums
def dijkstra(matrix, source):
M = 1E100
n = len(matrix)
m = len(matrix[0])
if source >= n or n != m:
print('Error!')
return
found = [source] # 已找到最短路径的节点
cost = [M] * n # source到已找到最短路径的节点的最短距离
cost[source] = 0
path = [[]] * n # source到其他节点的最短路径
path[source] = [source]
while len(found) < n: # 当已找到最短路径的节点小于n时
min_value = M + 1
col = -1
row = -1
for f in found: # 以已找到最短路径的节点所在行为搜索对象
for i in [x for x in range(n) if x not in found]: # 只搜索没找出最短路径的列
if matrix[f][i] + cost[f] < min_value: # 找出最小值
min_value = matrix[f][i] + cost[f] # 在某行找到最小值要加上source到该行的最短路径
row = f # 记录所在行列
col = i
if col == -1 or row == -1: # 若没找出最小值且节点还未找完,说明图中存在不连通的节点
break
found.append(col) # 在found中添加已找到的节点
cost[col] = min_value # source到该节点的最短距离即为min_value
path[col] = path[row][:] # 复制source到已找到节点的上一节点的路径
path[col].append(col) # 再其后添加已找到节点即为sorcer到该节点的最短路径
return found, cost, path
def run(index):
matrix = generate_matrix()
found, cost, path = dijkstra(matrix, 0)
print('found:')
print(found)
print('cost:')
print(cost[21])
print('path:')
for p in path:
if p and p[-1] == index:
print(p)
for j in p:
print(cnt[j], "->", end="")
run(21)
网友评论