tf.image.flip_up_down
- 用法
flip_up_down(
image
)
- 示例
flipped = tf.image.flip_up_down(img_data)
- tf.image.flip_left_right
- tf.image.transpose_image
- tf.image.random_flip_up_down
- tf.image.random_flip_left_right
tf.image.adjust_brightness
- 用法
adjust_brightness(
image,
delta
)
delta: 亮度增加的值;
- 示例
adjusted = tf.image.adjust_brightness(img_data, -0.5)
- tf.image.random_brightness
- tf.image.adjust_contrast
- tf.image.random_contrast
- tf.image.adjust_hue
- tf.image.random_hue
- tf.image.adjust_saturation
- tf.image.random_saturation
- tf.image.per_image_standardization
tf.expend_dims
- 用法
expend_dims(
input,
axis=None,
name=None,
dim=None
)
- 示例
tf.shape(tf.expand_dims(t, 0)) # [1, 2]
tf.shape(tf.expand_dims(t, 1)) # [2, 1]
tf.shape(tf.expand_dims(t, -1)) # [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
tf.shape(tf.expand_dims(t2, 0)) # [1, 2, 3, 5]
tf.shape(tf.expand_dims(t2, 2)) # [2, 3, 1, 5]
tf.shape(tf.expand_dims(t2, 3)) # [2, 3, 5, 1]
tf.image.draw_bounding_boxes
- 用法
tf.image.draw_bounding_boxes
images,
boxes,
name=None
)
images: 必须是实数类型,4-D [batch, height, width, depth];
boxes: 3-D[batch, num_bounding_boxes, 4];
- 示例
boxes = tf.constant([[[0.05, 0.05, 0.9, 0.7], [0.35, 0.47, 0.5, 0.56]]])
batched = tf.expand_dims(
tf.image.convert_image_dtype(img_data, tf.float32), 0)
result = tf.image.draw_bounding_boxes(batched, boxes)
- tf.image.sample_distorted_bounding_box
sample_distorted_bounding_box(
image_size,
bounding_boxes,
seed=None,
seed2=None,
min_object_covered=0.1,
aspect_ratio_range=None,
area_range=None,
max_attempts=None,
use_image_if_no_bounding_boxes=None,
name=None
)
image_size: 1-D,[height, width, channels];
bounding_boxes: 3-D,[batch, N, 4];
min_object_covered: 截取比例;
- 示例
begin, size, bboxes = tf.image.sample_distorted_bounding_box(
tf.shape(img_data), bounding_boxes=boxes,
min_object_covered=0.4)
begin: 1-D,[offset_height, offset_width, 0];
size: 1-D,[target_height, target_width, -1];
bboxes: 3-D,[1, 1, 4]边界框;
tf.clip_by_value
- 用法
clip_by_value(
t,
clip_value_min,
clip_value_max,
name=None
)
- 示例
adjusted = tf.clip_by_value(image, 0.0, 1.0)
网友评论