美文网首页
Machine-Learning-Day-3

Machine-Learning-Day-3

作者: 西出玉门东望长安 | 来源:发表于2019-01-15 05:32 被阅读41次
    多元线性回归

    Day 3的任务是多元线性回归. 开始任务~


    Screen Shot 2019-01-11 at 1.13.33 PM.png Screen Shot 2019-01-14 at 4.15.05 PM.png Screen Shot 2019-01-14 at 4.15.20 PM.png
    Step1 Data Preprocessing
    Screen Shot 2019-01-14 at 4.19.07 PM.png

    首先我们import numpy, pandas, matplotlib. 使用pandas来read数据集. 使用sklearn来分配训练集和测试集. test_size为五分之一. 注意, 这里有必要的话, 我们需要编辑虚拟向量并注意避免虚拟变量陷阱.

    code如下:

    # Step1 Data Preprocessing
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    
    # Import Datasets
    dataset = pd.read_csv('../datasets/50_Startups.csv')
    X = dataset.iloc[ : , :-1].values
    Y = dataset.iloc[ : , 4 ].values
    
    from sklearn.preprocessing import LabelEncoder, OneHotEncoder
    labelencoder = LabelEncoder()
    X[: , 3] = labelencoder.fit_transform(X[ : , 3])
    onehotencoder = OneHotEncoder(categorical_features= [3])
    
    X = X[: , 1:]
    
    from sklearn.model_selection import train_test_split
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
    
    print("X_train")
    print(X_train)
    print("X_test")
    print(X_test)
    print("Y_train")
    print(Y_train)
    print("Y_test")
    print(Y_test)
    
    Step2 train the model by using multiple linear regression
    Screen Shot 2019-01-14 at 4.19.14 PM.png

    线性回归来训练我们的数据集.
    code如下:

    # Step2 train by using multiple linear regression
    from sklearn.linear_model import LinearRegression
    regressor = LinearRegression()
    regressor.fit(X_train, Y_train)
    
    Step3 Prediction Outcome
    Screen Shot 2019-01-14 at 4.19.17 PM.png

    我们可以使用predict来预测输出, 将输出保存到Y_pred中, 然后打印出来.
    code如下:

    #Step 3: Prediction Outcome
    Y_pred = regressor.predict(X_test)
    print('Y_pred')
    print(Y_pred)
    
    Step4 Visulization

    最后一步, 我们使用matplotlib来可视化我们的结果. 这里我们可以把X_train和X_test可视化出来.

    Day3_1.png Day3_2.png

    code如下:

    #Step 4: Visulization
    plt.plot(X_train, regressor.predict(X_train), color = 'blue')
    plt.show()
    
    plt.plot(X_test, regressor.predict(X_test), color = 'blue')
    plt.show()
    
    Github Code:

    Day-3 Code

    相关文章

      网友评论

          本文标题:Machine-Learning-Day-3

          本文链接:https://www.haomeiwen.com/subject/rsfedqtx.html